

PLAN VIEW SINGLE UNIT VAULT - NON-URD &

WIRING SCHEMATIC

DISTRIBUTION CONSTRUCTION STANDARD **UG** Transformers and Switchgears

TORONTO HYDRO

Approved By:

J.D./I.S.2017-11-10

Drafted By: Designed By: B.D. J.D./I.S.

Original Issue: K.S. 2009-09-08 Scale: N.T.S.

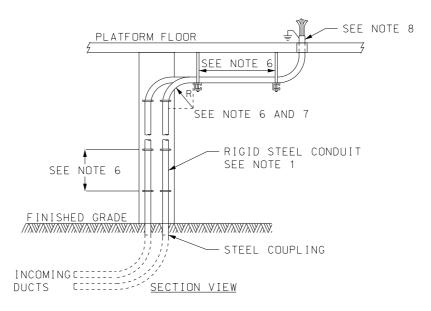
VAULT LIGHTING ARRANGEMENT

13-2200

2/3

		BOM LEGEND
	Α	2 UNIT TRANSFORMER 120/208 V ROOM / VAULT
	В	2 UNIT TRANSFORMER 347/600 V ROOM / VAULT
	С	1-PHASE TRANSFORMER URD SYSTEM
	D	3-PHASE 120/208 V TRANSFORMER URD SYSTEM
	Ε	3-PHASE 347/600 V TRANSFORMER URD SYSTEM
	F	3-PHASE 200 A SWITCH URD SYSTEM
	G	3-PHASE 600 A SWITCH URD SYSTEM
	Н	MODULAR SWITCH
2	I	1 UNIT TRANSFORMER 120/208 V ROOM / VAULT
2	J	2 UNIT TRANSFORMER 240/416 V ROOM / VAULT
2	K	1 UNIT TRANSFORMER 240/416 V ROOM / VAULT
2	L	1 UNIT TRANSFORMER 347/600 V ROOM / VAULT

A


	BILL OF MATERIALS	FOR 13-22	200											
ITEM	DECODIDATION	ITEM					Q	UAN	TIT	Υ				
NO.	DESCRIPTION	I.D.	А	В	С	D	Ε	F	G	Н	I	J	K	L
1	STRAP PIPE 1/2" GALV STEEL 1 HOLE	2310002		15			15			18			15	
2	ANCHOR THREADED CONCRETE 1/4" X 11/4"	2500100	30	30	20	30	30	20	30	40	30	30	30	30
3	PANEL CIRCUIT BREAKER 70 A 120/240 V	9656560	1	1	1	1	1	1	1	1	1	1	1	1
4	BREAKER CIRCUIT 20 A 120 V	9656680	2	2	2	2	2	2	2	2	2	2	2	2
5	CABLE #12 STR CU TW75 600 V BLACK	7150100											25	
6	CABLE #12 STR CU TW75 600 V WHITE	7150102	20	20	10	20	20	10	20	20	20	20	20	20
7	CABLE #12 STR CU TW75 600 V GREEN	7150098	20	20	10		20	10	20	20	20	20	20	
8	CONDUIT PVC RIGID 1/2" IN 10' LENGTHS	5230000	5	5	5	5	5	5	6	6	5	6	5	5
9	COUPLING PVC 1/2" FOR CONDUIT	5231027	6	6	6	6	6	6	6	6	6	6	6	6
10	ADAPTER MALE PVC 1/2" FOR CONDUIT	5232000	11	13	11	11	13	11	13	12	11	13	11	11
1 1	BEND PVC 1/2" 90 DEG FOR CONDUIT	5233000	5	5	5	5	5	5	5	5	5	5	5	5
12	BOX UTILITY PVC 2" DEEP FOR 1/2" CONDUIT	7405002	2	2	2	2	2	2	2	2	2	2	2	2
	BOX OCTOGON PVC 4" X 1 1/2" DEEP FOR 1/2" CONDUIT	7405003	3	3	2	3	3	3	3	3	3	4	3	3
	LAMPHOLDER PORCELAIN 660 W 250 V KEYLESS	7440020	2	2	2	2	2	2	2	2	2	4	2	2
	COVER PVC DUPLEX RECEPTACLE	7446000	1	1	1	1	1	1	1	1	1	1	1	1
16	COVER PVC TOGGLE SWITCH	7446002	1	1	1	1	1	1	1	2	1	2	1	1
17	TAPE PVC 3/4" X .0075" MIN LOW TEMPERATURE	7600001	1	1	1	1	1	1	1	1	1	1	1	1
18	LAMP 300 W 125/130 V PS30	8010051	2	2	2	2	2	2	2	2	2	4	2	2
19	SWITCH TOGGLE APPLIANCE 20 A 1 WAY	9653473	1	1	1	1	1	1	1	_	1	2	1	1
	RECEPTACLE GROUND FAULT 20 A 125 V	9665648	1	1	1	1	1	1	1	1	1	1	1	1
	LOCKNUT 1/2" CONDUIT	9655483	10	13	10	10	13	10	10	11	10	13	10	10
22	TRANSFORMER DRY TYPE 1PH 3 kVA 600-120/240 V	6621501	_	1	_	_	1	-	-	_	_	_	_	1
23	SWITCH TOGGLE APPLIANCE 20 A 3 WAY	9653472	_	_	_	_	_	-	-	2	_	_	_	-
24	CONNECTOR CU SPLIT U-BOLT #1-4/0 STR	7213000	1	1	1	1	1	1	1	1	1	1	1	1
	CABLE #12 STR CU TW75 600 V RED	7190060	_	_	_	_	-	_	_	10	_	_	_	_
	CEMENT SOLVENT FOR RIGID PVC CONDUIT	9652392	1	1	1	1	1	1	1	1	1	1	1	1
27	SWITCH SAFETY HEAVY DUTY 30A 600V AC	9653443	_	1	_	-	1	_	_	_	_	1	1	1
28	FUSE 600V 10A	7073017	_	2	_	_	2	_	_	_	_	_	_	2
29	TRANSFORMER DRY TYPE 1PH 3KVA 250V-120V	9662764	_	_	_	_				_	_	1	1	-
30	FUSE 600V 15A	9651286	_	_	-	_	-	_	_	_	-	2	2	-

* SEE NOTE 3

NOTES:

- 1) LIGHTING LAYOUTS IN THIS STANDARD ARE TO BE USED AS A GUIDELINE, LIGHTS AND ACCESORIES ARE TO BE ARRANGED TO SUIT SITE CONDITIONS.
- 2) 3 WAY TOGGLE SWITCHES SHALL BE INSTALLED NEAR EACH OF VAULT DOORS IN MODULAR SWITCHING VAULT.
- 3) QUANTITIES OF SOME MATERIALS MAY VARY DUE TO SIZE AND LAYOUT.
- 4) 1-PHASE TRANSFORMER AND 200 A SWITCH VAULT ON URD SYSTEM REQUIRES 1 LIGHT.
- 5) ALL EQUIPMENT TO BE MOUNTED ON WALLS IN URD NETWORK VAULTS.
- 6) WIRE TWO OUTER POSITIONS OF SAFETY SWITCH AND INSTALL FUSES IN THEIR RESPECTIVE FUSE HOLDERS.

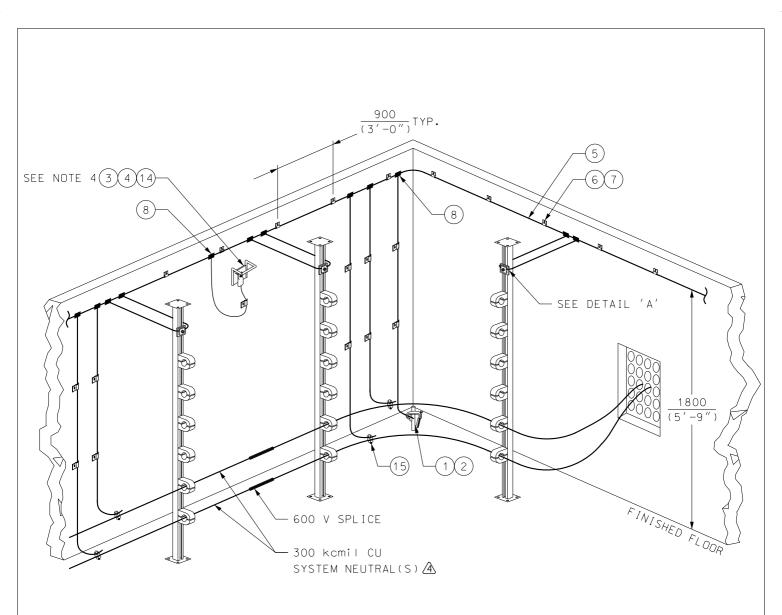
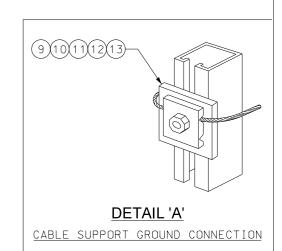

DISTRIBUTION CONSTRUCTION STANDARD **UG Transformers and Switchgears** VAULT LIGHTING ARRANGEMENT Approved By: J.D./I.S.2017-11-10 TORONTO HYDRO Drafted By: Designed By: Original Issue: Scale: 13-2200 3/3 B.D. J.D./I.S. K.S. 2009-09-08 N.T.S.

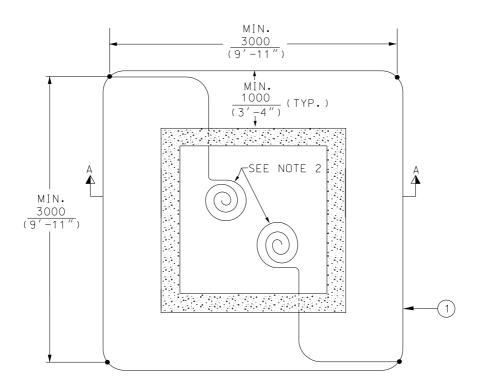
TABLE 1		
SERVICE SIZE AND TYPE OF CABLE	ITEM I.D.	MIN. CONDUIT SIZE FOR 3 CONDUCTOR
13.8 kV #1/0 3-1C TRIPLEX 15 kV AL TRXLPE	7180016	3 "
13.8 kV #3/0 3-1C TRIPLEX 15 kV Cu TRXLPE	7180020	3 "
13.8 kV 500 kcmil 3-1C TRIPLEX 15 kV Cu TRXLPE	7180032	4 "


- 1) RIGID NON-FERROUS THREADED STEEL CONDUIT TO BE USED FOR CABLE ROUTING, CONDUIT SHALL HAVE TAPERED THREAD AND BE MADE WATERTIGHT.
- 2) CONDUITS SHALL BE SECURELY ATTACHED TO HANGERS OR TO A SOLID SURFACE. THE TYPE OF SUPPORTS USED TO BE DETERMINED BASED ON FIELD CONDITIONS.
- 3) CONDUIT SIZE SHALL BE IN ACCORDANCE WITH TABLE 1 AND BE OF SUFFICIENT SIZE TO PERMIT THE CONDUCTORS TO BE DRAWN IN AND WITHDRAWN WITHOUT DAMAGE TO THE CABLES.
- 4) THE INCOMING PRIMARY SERVICE CABLES SHALL HAVE A DEDICATED CONDUIT PER RUN AND SHALL NOT BE SHARED WITH OTHER SERVICES, CONDUCTORS OR NEUTRAL.
- 5) THERE SHALL BE NO CABLE JOINTS OR SPLICES WITHIN CONDUIT.
- 6) CONDUIT SHALL BE SUPPORTED AT MAXIMUM 3000 mm (9'-10") INTERVALS AS WELL AS BEFORE AND AFTER ALL CHANGES OF DIRECTION.
- 7) CONDUIT BEND RADII AND CABLE PULLING FORCES SHALL NOT EXCEED THE LIMITS REFERENCED IN STD. 16-0220, 16-0260 AND 16-1260.
- 8) WHERE A CONDUIT ENTERS A BOX, FITTING, OR OTHER ENCLOSURE, A BUSHING SHALL BE PROVIDED TO PROTECT THE CABLE FROM ABRASION UNLESS THE DESIGN OF THE BOX, FITTING, OR ENCLOSURE IS SUCH AS TO AFFORD EQUIVALENT PROTECTION. ALL CUT ENDS SHALL BE REAMED OR OTHERWISE FINISHED TO REMOVE ROUGH EDGES.
- 9) WEATHERPROOF LABEL WILL BE AFFIXED AT REGULAR INTERVALS AROUND THE CONDUIT IN BLACK TEXT AGAINST AN ORANGE BACKGROUND THAT READS "DANGER HIGH VOLTAGE" ALONG WITH THE SYSTEM VOLTAGE, I.E. DANGER HIGH VOLTAGE 13800 V.
- 10) CONDUIT SHALL BE BONDED TO GROUND BUS OR GROUND LOOP OF INCOMING SWITCHGEAR, BONDING CABLE TO BE STRANDED BARE CU, NO SMALLER THAN #2/0, AND SECURED RELIABLY TO CONDUIT VIA MECHANICAL GROUND CONNECTOR.
- 11) IF EXPANSION JOINTS USED, BONDING JUMPERS ON CONDUIT ARE REQUIRED TO MAINTAIN CONTINUITY ACROSS JOINT.

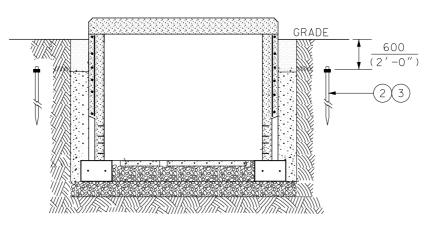
DISTRIBUTION COUNTY			Т	EMPORARY	PRIMA	ARY S	ERVICES	
TORONTO	Approved By: B.L. 2018	-03-01		CON	DUIT RC	DUTING		
HYDRO	Drafted By: B.W.	Designed By: B.L.	Original Issue:	15-8510	1/1			

A NOTES:

- 1) FOUR GROUND RODS SHALL BE INSTALLED NEAR THE CORNERS OF CABLE CHAMBER.
- 2) USE #2/0 BARE COPPER CONDUCTOR FOR GROUND LOOP AND CONNECTIONS TO GROUND RODS.
- 3) ALL NEUTRALS SHALL BE CONNECTED TO GROUND LOOP.
- 4) STIRRUP SHALL BE INSTALLED WHERE SPACE IS AVAILABLE TO ALLOW FOR PROPER GROUNDING PROVISIONS.



DISTRIBUTION CC Gr	NSTRUCTION ounding	STANDARD	UNDERG	ERGROUND SYSTEM					
TORONTO	Approved By: E.M. 20)17-03-31	CABLE CHA	MBER GRO	UNDING				
HYDRO	Drafted By: B.W.	Designed By: E.H.	Original Issue: C.P. 2001-01-10	Scale: Rev: 4	18-5100	1/2			


	BILL OF MATERIALS FOR 18-5100]
			IO T.V	
ITEM NO.	DESCRIPTION	I TEM I.D.	QTY A	
1	ROD 3/4" X 10' STEEL GALVANIZED	2470102	4	
2	CONNECTOR 3/4" ROD TO #2/0 CU	7214200	4	
3	CONNECTOR CU TERMINAL LUG TINNED #2/0 STR 1/2" HOLE	9662106	2	4
4	ANCHOR CONCRETE SLEEVE 1/2" X 3" LONG	9653086	2	4
5	WIRE #2/0 19 STR CU SD	7105160	43	4
6	CLIP CABLE CSA - CONDUCTOR MOUNTING	7210190	36	4
7	ANCHOR THREADED CONCRETE 1/4" X 13/4"	2500052	36	4
8	CONNECTOR COMPRESSION #2/0 CU TO #2/0 CU	7213156	34	4
9	NUT 1/2" CLAMPING C/W SPRING NUT	2520004	12	
10	BOLTED PARALLEL GROOVE GROUND CLAMP	7214105	12	
11	WASHER LOCK 1/2" GALV	2530116	12	
12	BOLT MACHINE 1/2" X 2" C/W HEX HEAD & NUT	2510330	12	
13	WASHER GALV SQUARE 11/2" X 11/2" C/W 9/16" HOLE	2530001	12	
14	CONNECTOR STIRRUP GROUNDING	7251095	2	
15	CONNECTOR CU U BOLT CLAMP 250-500 kcmil STR	7214413	4]4

* QUANTITY IS BASED ON CABLE CHAMBER SIZE 3500 mm X 4000 mm

DISTRIBUTION CO	NSTRUCTION rounding	STANDARD	UNDEF	RGROUI	ND SYS	TEM	4
TORONTO	Approved By: E.M. 2	017-03-31	CABLE CH	HAMBEF	RGROU	NDING	
HYDRO	Drafted By: B.W.	Designed By: E.H.	Original Issue: C.P. 2001-01-10	Scale: N.T.S.	Rev: 4	18-5100	2/2

PLAN VIEW

SECTION A-A

	BILL OF MATERIALS FOR 18-5500		
ITEM NO.	DESCRIPTION	ITEM I.D.	QTY A
1	WIRE 2/O 19 STR CU SD	7105160	24 ,
2	ROD 3/4" X 10' GROUND STEEL GALVANIZED	2470102	4
3	CONNECTOR CU GROUND WRENCH LOCK 3/4" ROD TO 2/0 CU CONDUCTOR	7214200	6
XXXXXX	ASSOCIATED STANDARDS (************************************		
4	GROUND ROD INSTALLATION STD.	18-4300	1

- 1) GROUNDING SHALL BE INSTALLED AS SHOWN, RODS TO BE CONNECTED BY 2/0 BARE COPPER TO FORM A COMPLETE GROUND LOOP AROUND FOUNDATION.
- 2) LEAVE TWO COILS EACH 2000 mm (6'-7") INSIDE FOUNDATION.

	NSTRUCTION rounding	STANDARD	GRC	UND GRID				
TORONTO	Approved By: T.T. 201	3-02-15	PAD-MOUI	INTED EQUIPMENT				
HYDRO	Drafted By:	Designed By:	Original Issue: K.S. 2012-08-30	Scale: Rev: 1	18-5500	1/1		

			NDERGROUND CLEARANCE ILITIES (AS PER CITY MCR				
		UTILITIES	3	VERTICAL	HORIZONTAL		
A		TREES (CITY OF	TORONTO)	SEE NOTE 1 A	ND STD. 21-0400		
A	HEA	VY RAILWAY TRACKS	(CN/CP/METROLINX)	REFER TO STD. 31-1310			
2	STR	EETCAR LIGHT RAIL	TRACKS (LRT/TTC)	REFER TO	STD. 31-1200		
			POLES SEE NOTES 3 AND 4	-	600 (2′-0″)		
A	TODON	NTO HYDRO	CHAMBER/VAULT	600 (2'-0")	600 (2′-0″)		
	TORON	NIO HIDRO	PADMOUNT/SUB VAULT/TAP BOX	BELOW STRUCTURE	1400 (4′-7″)		
			DUCTS OR CONCRETE ENCASED DUCTBANKS	300 (1'-0")	600 (2'-0")		
7		HYDRO ONE DUCT BANK HYDRO ONE FOR REDU		1000 (3'-4")	1000 (3′-4″)		
	COMM	UNICATION PLANT (BI	ELL, ROGERS, ETC.)	300 (1′-0″)	600 (2'-0") SEE NOTE 5		
	ENWAVE ENE		STEAM PIPES	600 (2′-0″)	600 (2′-0″)		
7	ENWAVE ENEI	RGY CORPORATION	CHILLED WATER PIPES	300 (1′-0″)	300 (1′-0″)		
			<300 (1'-0") DIA.	300 (1′-0″)	600 (2′-0″)		
			≥300 (1'-0") DIA.	600 (2′-0″)	600 (2′-0″)		
		RIDGE GAS ENERGY BOARD	NEB REGULATED PIPELINES AND VITAL MAINS	600 (2′-0″)	1000 (3'-4")		
			ALL PIPELINES DIRECTIONAL DRILLING/ BORING METHOD	1000 (3'-4")	1000 (3′-4″)		
			<150 (6") DIA.	150 (6")	600 (2′-0″)		
		G T O D U	150 (6") < 750 (2'-6") DIA.	300 (1′-0″)	750 (2′-6″)		
		STORM	≥750 (2'-6") DIA.	500 (1′-8″)	900 (3′-0″)		
7			MAINTENANCE HOLE	_	600 (2′-0″)		
	SEWERS		<100 (4") DIA.	150 (6")	600 (2′-0″)		
		CANATA DV (OOMD INFO	100 (4") < 375 (1'-3") DIA.	300 (1′-0″)	750 (2′-6″)		
		SANITARY/COMBINED	≥375 (1'-3") DIA.	500 (1′-8″)	900 (3′-0″)		
7			MAINTENANCE HOLE	_	600 (2′-0″)		
			<100 (4") DIA.	150 (6")	600 (2′-0″)		
	WATER SUPPLY	WATER MAINS	100 (4") < 400 (1'-4") DIA.	300 (1′-0″)	750 (2′-6″)		
	WAILK SUPPLY		≥400 (1'-4") DIA.	500 (1′-8″)	900 (3′-0″)		
		WATER	R VALVE CHAMBER	SEE NOTE 6	600 (2′-0″)		
Σ		BURIED PLANT CLI	EARANCE FROM FIRE HYDRANT	400 (1'-4")	1500 (4′-11″)		

Civil Construction Approved By: TORONTO 2017-05-29 J.D.

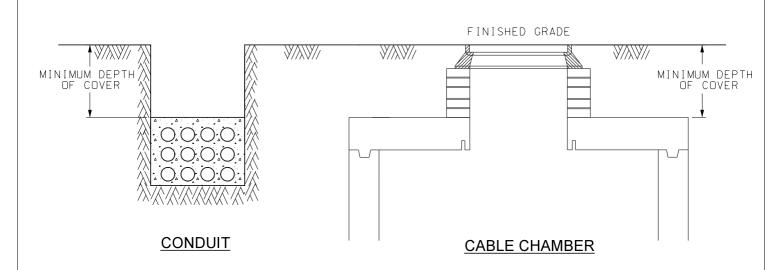
Drafted By:

B.D.

Designed By:

J.D.

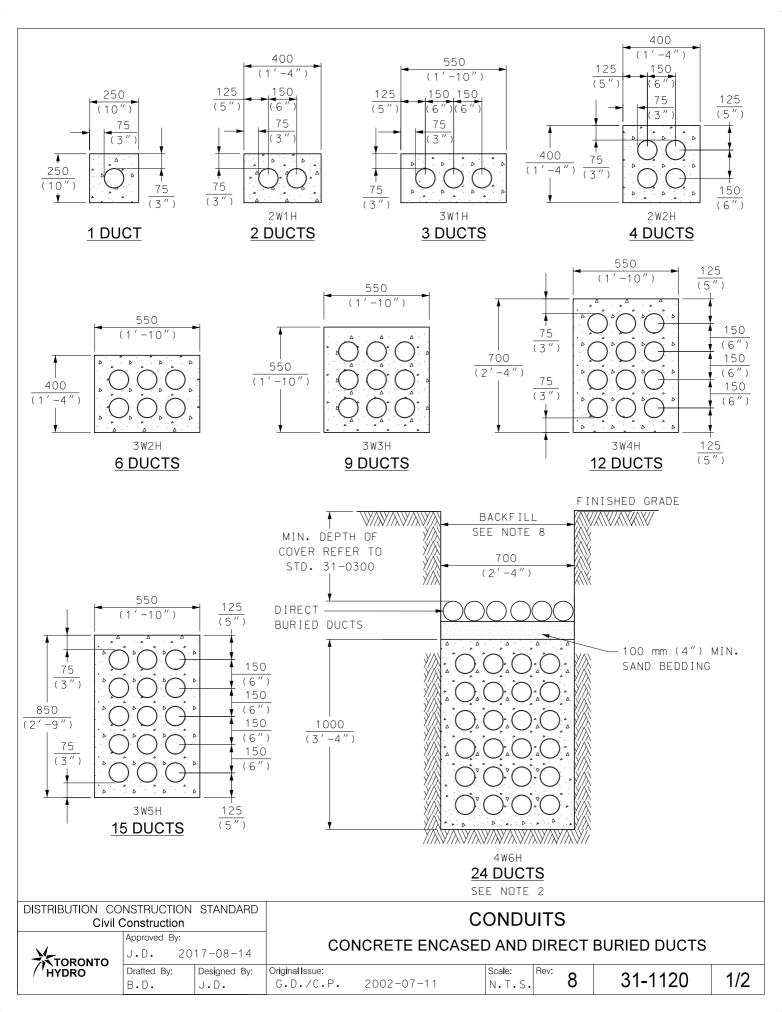
UNDERGROUND CLEARANCES

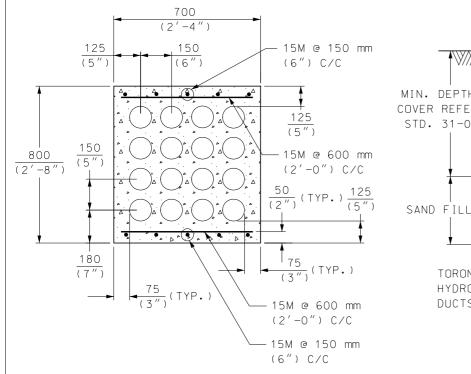

Original Issue: J.D. 2000-12-28 Scale: N.T.S.

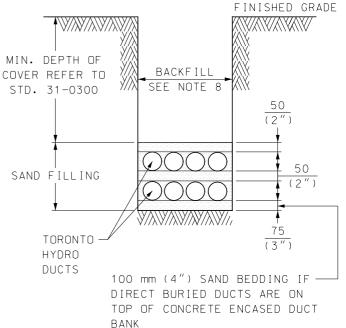
31-0100

1/2

- 1) ANY CONSTRUCTION ACTIVITY IN THE VICINITY OF TREES SHALL BE CARRIED OUT IN COMPLIANCE WITH LATEST CITY OF TORONTO'S "TREE PROTECTION POLICY AND SPECIFICATIONS FOR CONSTRUCTION NEAR TREES" DOCUMENT.
- 2) IF THE MINIMUM CLEARANCES SHOWN CANNOT BE MET, THE SUBJECT UTILITIES APPROVAL MAY BE OBTAINED FOR REDUCED CLEARANCES.
- 3) WHEN THE CONDITION OF SOIL OR LOCATION AND DEPTH OF THE TRENCH COULD RESULT IN SOIL MOVEMENT OR SETTLEMENT, THE CONTRACTOR SHALL BE RESPONSIBLE TO PROVIDE POLE SUPPORT.
- 4) CONTRACTOR SHALL AT NO TIME CUT INTO REINFORCED SIDEWALK BAYS AND POLE BASES, SIDEWALK BAYS AND POLE BASES PROVIDE LOADING SUPPORT FOR THE POLE, PLANT CAN BE INSTALLED UNDER REINFORCED SIDEWALK BAYS BY TUNNELING AT A MINIMUM VERTICAL CLEARANCE OF 600 mm (2'-0"). PLANT SHALL NOT BE INSTALLED UNDER POLE BASE.
- \$\times_5\$) IF THE MINIMUM HORIZONTAL CLEARANCE CANNOT BE MET DUE TO EXISTING PLANT LOCATION OR FIELD CONDITION, CLEARANCE CAN BE REDUCED TO 300 mm (1'-0") WITH THE CONTRACTOR/CUSTOMER PROVIDING THE FOLLOWING TO TORONTO HYDRO:
 - A) A LETTER, STAMPED AND SIGNED BY A PROFESSIONAL ENGINEER OF ONTARIO, OUTLINING:
 - THAT THE CONTRACTOR/CUSTOMER IS RESPONSIBLE FOR ALL COSTS ASSOCIATED WITH SUPPORT AND INSPECTION, AS WELL AS ANY DAMAGES AND ASSOCIATED COSTS;
 - THAT THE ACHIEVABLE CLEARANCE IS NOT LESS THAN 300 mm (1'-0");
 - THE METHOD OF PROTECTION AND/OR SUPPORT. SUPPORT IS REQUIRED IF TORONTO HYDRO PLANT IS UNDERMINED;
 - THAT THIS IS A UNIQUE SCENARIO THAT REQUIRES A DEVIATION FROM TYPICAL CONSTRUCTION STANDARD, AND IDENTIFY THAT THE DEVIATION IS ALSO FROM THE TYPICAL CLEARANCES SET OUT BY TORONTO HYDRO AND THE CITY OF TORONTO.
 - B) DRAWING WHICH SHALL INCLUDE:
 - STAMP AND SIGNATURE OF A PROFESSIONAL ENGINEER IN THE PROVINCE OF ONTARIO;
 - LENGTH OF THE PLANT BEING SUPPORTED AND/OR PROTECTED;
 - METHOD OF PROTECTION AND/OR SUPPORT SYSTEM IN BOTH PLAN AND SECTION VIEWS;
 - MAXIMUM DEFLECTION OF THE PLANT WITH THE SUPPORT;
 - DEFLECTION MONITORING SYSTEM PLACEMENT IF SOIL SETTLEMENT WILL OCCUR ON SITE;
 - BACKFILLING PROCEDURES;
 - THAT THE ACHIEVABLE CLEARANCE IS NOT LESS THAN 300 mm (1'-0").
 - C) A PURCHASE ORDER FOR THE AMOUNT OF TIME A CIVIL INSPECTOR FROM TORONTO HYDRO WILL BE REQUIRED ON SITE. AN ESTIMATE WILL BE PROVIDED BY TORONTO HYDRO.
- 6) CONTACT THE CITY OF TORONTO FOR MINIMUM VERTICAL CLEARANCE TO WATER VALVE CHAMBER.
- ↑ 7) ANY PLANT TO BE INSTALLED UNDER TORONTO HYDRO GUY ANCHORS SHALL MAINTAIN A MINIMUM VERTICAL CLEARANCE OF 1000 mm (3'-4").
 - 8) FOR ABOVE GRADE CLEARNACES REFER TO:
 - 03-2300 BUILDING AND PERMENANT STRUCTURES
 - 03-2400 POLES AND PRIVATE FENCES
 - 04-4100 POLE LOCATION GUIDELINES


DISTRIBUTION CO Civil (NSTRUCTION Construction	STANDARD		LINDEDODO			ANCES	
TORONTO	Approved By: J.D. 2	017-05-29		UNDERGRO	טאט	CLEAR	ANCES	
HYDRO	Drafted By: B.D.	Designed By:	Original Issue	2000-12-28	Scale: N.T.S.	Rev: 7	31-0100	2/2




THE "MINIMUM DEPTH OF COVER" FOR THESL PLANT (CONDUITS AND CABLE CHAMBERS) SHALL BE AS FOLLOWS:

TYPE	MINIMUM DEPTH OF COVER	DESCRIPTION	
CURBED ROADS	1000 (3'-4")	FOR AREAS UNER THE ROAD, CURB, AND SIDEWALK, THE PORTION OF THE BOULEVARD WITHIN ONE METRE OF THE BACK OF CURB AND/OR SIDEWALK, AND THE ENTIRE RIGHT-OF-WAY WITHIN 30 METRES OF AN INTERSECTION, THE MINIMUM DEPTH OF COVER SHALL BE ONE METRE.	
UNCURBED ROADS	1300 (4'-3") BELOW THE CENTERLINE OF THE ROAD, OR 600 (2'-0") BELOW THE LOWEST POINT OF THE ADJACENT DITCH, WHICHEVER IS DEEPER.	FOR THE ENTIRE RIGHT-OF-WAY, FROM STREET-LINE TO STREET-LINE, ON UNCURBED ROADS.	2
BOULEVARDS	800 (2′-8″)	EXCEPT WHERE SPECIFIED ABOVE, THE MINIMUM DEPTH OF COVER ON ALL STREETS SHALL BE 800 MILIMETRES.	2

- 1) THE DEPTHS OF COVER ARE IN ACCORDANCE WITH THE CITY'S MUNICIPAL CONSENT REQUIREMENTS DOCUMENT.
 2) THE DEPTHS OF COVER APPLY TO ALL CONDUITS IRRESEPECTIVE OF THE TYPE AND METHOD OF INSTALLATION.
- DISTRIBUTION CONSTRUCTION STANDARD UNDERGROUND CLEARANCES Civil Construction MINIMUM DEPTH OF COVER Approved By: FOR TORONTO HYDRO STRUCTURES B.D. 2018-08-29 TORONTO HYDRO Drafted By: Designed By: Original Issue: Scale: Rev: 31-0300 1/1 M.D. B.D. J.D. 2010-10-21 N.T.S.

REINFORCED DUCT BANK

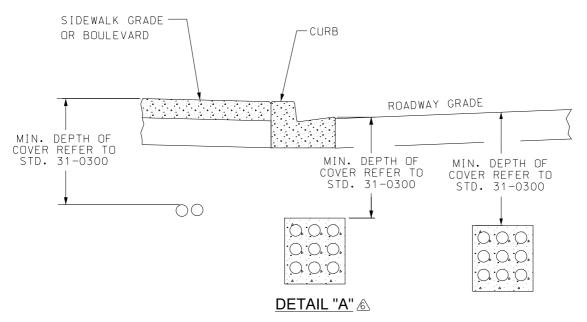
SEE NOTE 3

DIRECT BURIED DUCTS

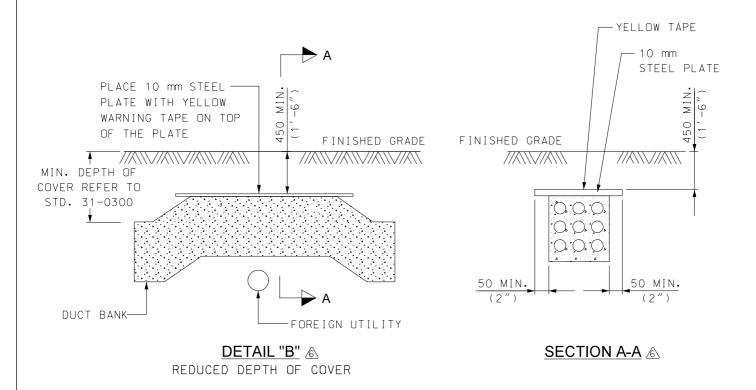
SEE NOTES 2, 9 and 10

NOTES:

- 1) REFER TO STD. 31-0300 FOR MIN. DEPTH OF COVER.
- 2) IN AN OPEN TRENCH CONSTRUCTION, ENCASE THE DUCTS IN CONCRETE IF:
 - DUCTS ARE CARRYING PRIMARY CABLES (750 V OR MORE),
 - DUCTS ARE UNDER ROADWAY OR DRIVEWAY,
 - DUCT HAVE 90 DEGREE BENDS,

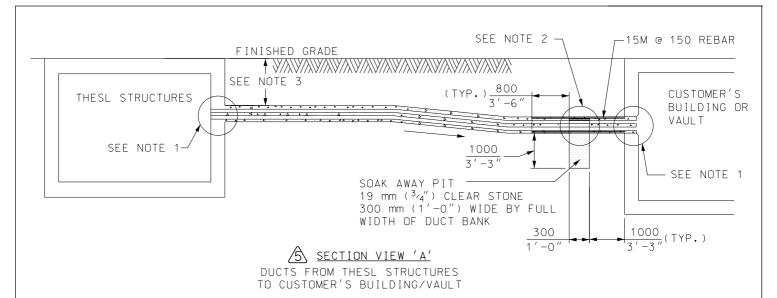

DIOTRIDITION CONOTRIUSTION CTANDARD

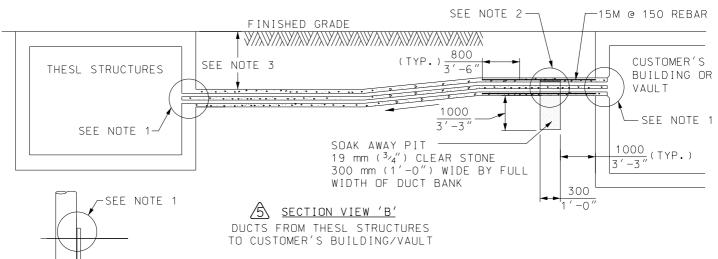
- THE NUMBER OF DUCTS ARE MORE THAN 8.
- IF NONE OF THE ABOVE CATEGORY APPLIES, THEN THE DUCTS SHALL BE DIRECT BURIED.
- 3) REINFORCED DUCT BANK SHALL BE USED ONLY IN POOR SOIL CONDITIONS OR WHERE THERE IS HIGH WATER TABLE.
- 4) CONCRETE SHALL BE A MIN. 20 MPa, WITH 10 mm ($^{3}/_{8}$ ") AGGREGATES.
- 5) REINFORCING SHALL CONFORM TO CSA STANDARD G30.18-09, Fy = 400 MPa.
- 6) ALL DUCTS SHALL BE 100 mm (4") IN DIAMETER UNLESS NOTED OTHERWISE.
- 7) HORIZONTAL AND VERTICAL SEPARATION BETWEEN DUCTS IS CONTROLLED DURING CONSTRUCTION BY PLASTIC DUCT SPACERS.
- 8) EXCAVATION SHALL BE BACKFILLED TO GRADE AS PER SPECIFICATION #CV-CON-01 CLAUSE 5.1.17 AND/OR TORONTO'S LATEST BACKFILLING REQUIREMENT.
- 9) MAX. NUMBER OF DIRECT BURIED DUCTS SHALL BE 8. DUCTS MAY BE PLACED IN AN IRREGULAR FORMATION IN A MAX. OF TWO ROWS.
- ⚠10) RED DUCT SHALL BE USED IN ALL NEW AND REBUILD UNDERGROUND DIRECT BURIED INSTALLATIONS.


 THIS INCLUDES ELECTRICAL CABLES AND COMMUNICATION CABLES, IF REQUIRED, 50 mm (2") DUCT CAN

 BE USED FOR COMMUNICATION CABLES.

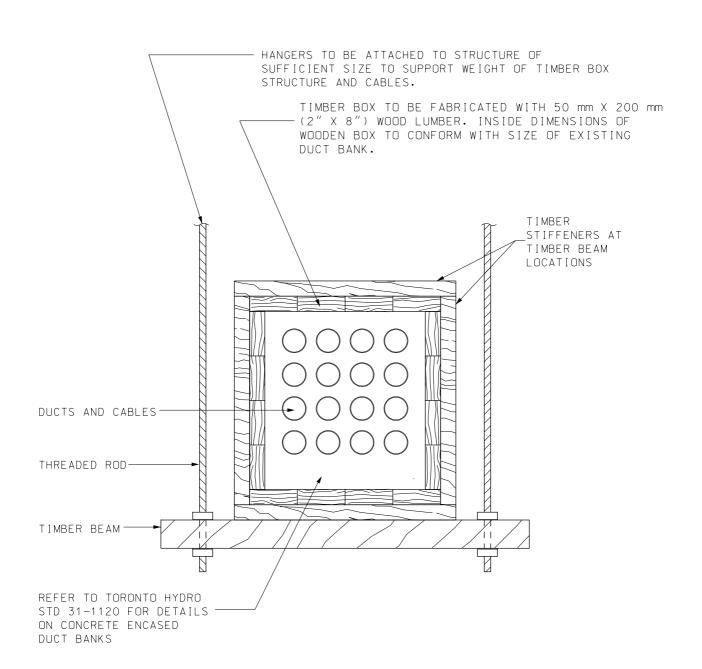
Civil	Construction	STANDARD	CONDUITS					
TORONTO	Approved By: J.D. 20	17-08-14	СО	NCRETE ENCASEI	D AND	DIRECT	BURIED DUCTS	
/ HYDRO	Drafted By: B.D.	Designed By:	Original Issue:	2002-07-11	Scale: N.T.S.	Rev: 8	31-1120	2/2




NOTE: THIS ALSO APPLIES TO DIRECT BURIED DUCTS AND POLYPIPES

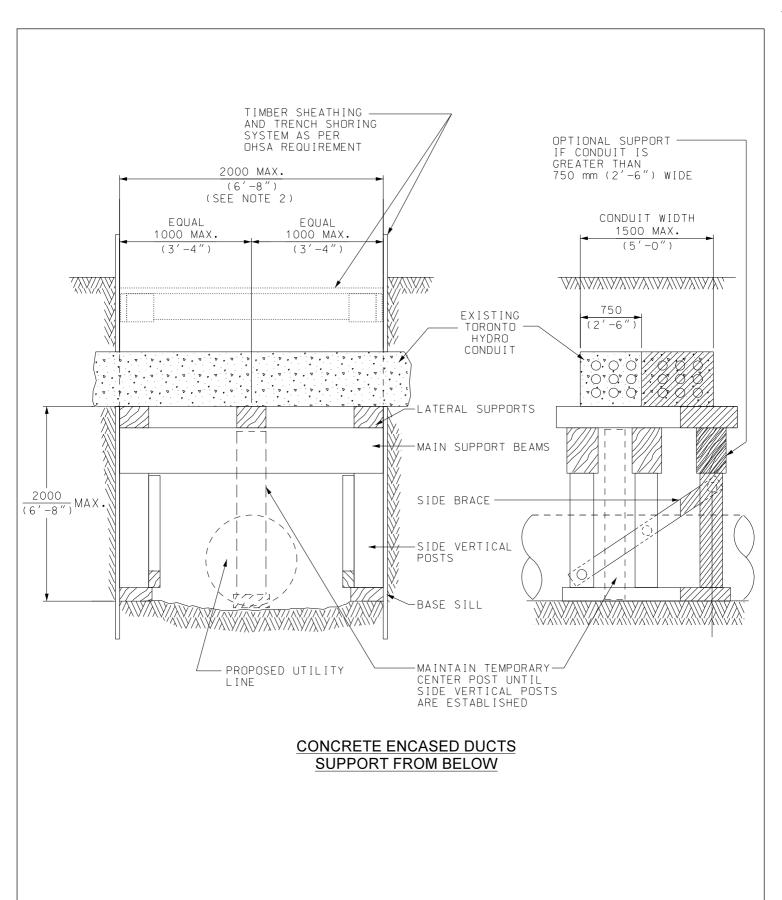
- 1) IF UNDER SPECIFIC CIRCUMSTANCES MINIMUM DEPTH OF COVER REQUIREMENT CANNOT BE MET, REDUCED COVER MAY BE USED WITH CITY'S APPROVAL. THE REDUCED COVER SHALL NOT BE LESS THAN 450 mm (1'-6").
- 2) IF MINIMUM DEPTH OF COVER IS REDUCED, A 10 mm STEEL PLATE AND WARNING TAPE HAS TO BE PROVIDED AS SHOWN IN DETAIL "B".

DISTRIBUTION CO	NSTRUCTION Construction	STANDARD	CONDUITS					
Approved By: B.D. 2018-08-31		-08-31	DEPTH OF CONDUITS					
HYDRO	Drafted By: B • D •	Designed By: B.D.	Original Issue: G.D./L.G.	2000-12-19	Scale: Rev:	6	31-1150	1/1

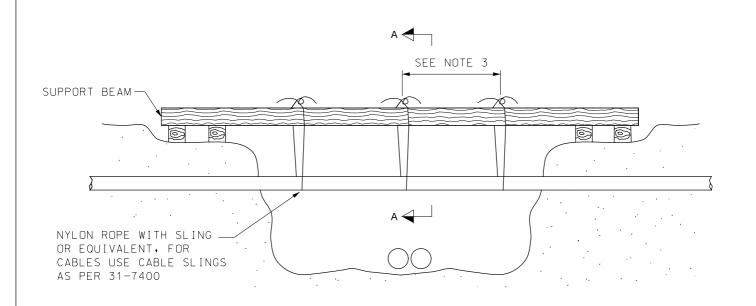


SECTION VIEW 'C'

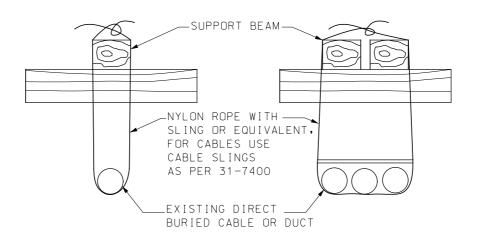
DUCTS FROM THESL POLES
TO CUSTOMER'S BUILDING/VAULT


- 1) SEALANT SHALL BE APPLIED TO:
 - DUCTS EXITING THESL STRUCTURES (POLES, CABLE CHAMBERS, PADMOUNTS, SPLICE VAULTS, TAP/SPLICE BOXES AND VAULTS) WHEN FEEDING INTO CUSTOMER'S BUILDING/VAULTS AND ALSO DUCTS AT CUSTOMER'S BUILDING/VAULTS ENTRANCE POINT;
 - LOCATIONS WHERE EXISTING SEALANT (STOCK CODES 8940011, 9656790 OR 9656791) IS NOT ADEQUATE.
 - 2) DRILL 4 DRAINAGE HOLES IN THE BOTTOM OF EACH DUCT. 13 mm ($^{1}/_{2}"$) DIA. AT 50 mm (2") CENTRES. FILL TO TOP OF DUCTS WITH 19 mm ($^{3}/_{4}"$) CLEAR STONE. TOP OFF WITH A LAYER OF 25 mm (1") STYROFOAM, AND A FINAL LAYER OF CONCRETE.
 - 3) REFER TO STD. 31-0300 FOR MIN. DEPTH OF COVER.
 - 4) CUSTOMER IS RESPONSIBLE TO CONSTRUCT SOAKAWAY PIT ON CUSTOMER PROPERTY AS INDICATED ABOVE.

DISTRIBUTION CC	NSTRUCTION Construction	I STANDARD	CONDUITS						
\ <u>\</u>	Approved By:	021/10/21		SUPPLYING CUSTOMER'S BUILDING					
TORONTO	Drafted By:	Designed By: B.D.	Original Issue:	2002-11-25	Scale: Rev: 5	31-1230	1/1		

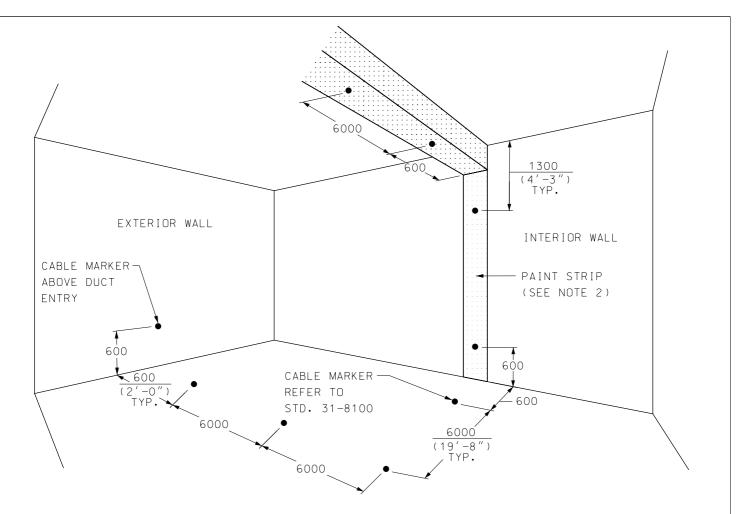


CONCRETE ENCASED DUCTS TIMBER BOX DETAIL


DISTRIBUTION CO Civil (NSTRUCTION Construction	STANDARD	DUCT OR CABLE						
TORONTO	Approved By:			SUPPORT	IN PLA	ACE S	YS	TEM	
HYDRO	Drafted By: B.D.	Designed By:	Original Issue:	2002-11-25	Scale: N.T.S.	Rev:	3	31-1350	1/4

DISTRIBUTION CC Civil (NSTRUCTION Construction	STANDARD	DUCT OR CABLE					
Approved By:			SUPPORT IN PLACE SYSTEM					
HYDRO	Drafted By: B.D.	Designed By:	Original Issue: G.D./C.P.	2002-11-25	Scale:	Rev: 3	31-1350	2/4

DIRECT BURIED DUCT OR CABLE


SECTION 'A-A'

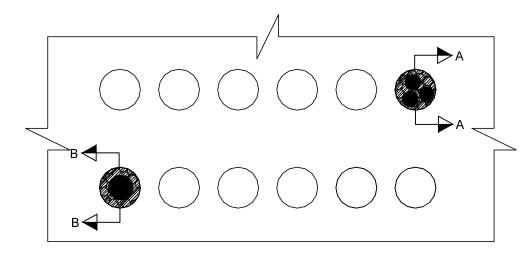
MULTIPLE CABLES OR DUCTS

DISTRIBUTION CC Civil (Construction	STANDARD	DUCT OR CABLE					
TORONTO	Approved By:			ACE SYS	STEM			
HYDRO	Drafted By: B.D.	Designed By:	Original Issue:	2002-11-25	Scale: N.T.S.	Rev: 3	31-1350	3/4

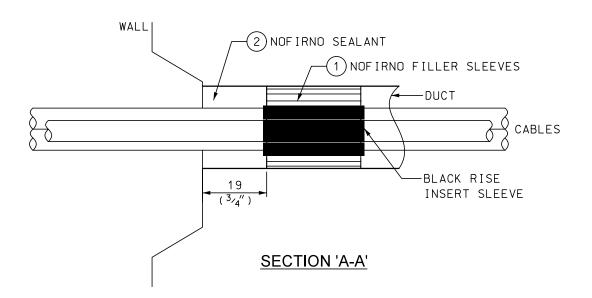
- 1) THIS DRAWING IS TO BE USED ONLY AS A GUIDELINE AS THE SUPPORT STRUCTURE ELEMENTS WILL BE SITE SPECIFIC.
- 2) TEMPORARY SUPPORT IS REQUIRED WHENEVER THE UNDERGROUND CONDUIT IS UNDERMINED FOR MORE THAN 1200 mm (3'-11") IN LENGTH. ALL SUCH SUPPORTS SHALL MEET REQUIREMENTS OF NOTE #2.
- 3) THE CONTRACTOR/CONSULTANT SHALL PROVIDE A DETAILED DRAWING FOR THE SUPPORT SYSTEM SIGNED AND SEALED BY A PROFESSIONAL CIVIL ENGINEER OF ONTARIO TO SUIT SITE CONDITIONS. ENGINEER SHALL ACCOUNT FOR CABLE PULLING TENSION, LIVE LOADS, WIND LOADS, AND MAINTANENCE LOADS IN THEIR CALCULATIONS.
- 4) WHEN SUPPORTED FROM ABOVE, DIRECT BURIED DUCTS AND DIRECT BURIED CABLE, SPACING BETWEEN SUPPORTS SHALL NOT EXCEED 0.6 m (2'-0'').
- 5) FOR CONCRETE ENCASED AND DIRECT BURIED DUCTS, VERTICAL OR HORIZONTAL DISPLACEMENT SHALL NOT EXCEED 19 mm (3/4") OR 10 mm (3/8"), RESPECTIVELY. STRUCTURAL DAMAGE OR DISPLACEMENT OUTSIDE OF THIS RANGE SHALL BE REPORTED TO TORONTO HYDRO.
- 6) FOR CONCRETE ENCASED AND DIRECT BURIED DUCTS, MONITORING OF SUPPORT STRUCTURE WITH RESPECT TO HORIZONTAL, VERTICAL, AND VIBRATIONAL MOVEMENTS SHALL BE PROVIDED.
- 7) TEMPORARY SUPPORT WILL REMAIN IN-PLACE UNTIL THE BACK FILL MATERIAL UNDER THE STRUCTURE HAS BEEN COMPACTED ADEQUATELY TO RESTORE SUPPORT. BACKFILL ON TOP TO BE AS PER CV-CON-01.
- 8) ALTERNATIVE METHODS OF SUPPORT SYSTEM CAN BE CHOSEN BUT WILL REQUIRE TORONTO HYDRO TO REVIEW AND APPROVE.
- 9) TIMBER BOX TO BE PAINTED RED AND MARKED WITH SAFETY "DANGER" SIGN.
- 10)DAMAGED DIRECT BURIED DUCTS OR CONCRETE ENCASED DUCTS WILL REQUIRE TO BE REBUILT PRIOR TO SUPPORT IN PLACE INSTALLATION.
- 11)CONTRACTOR IS RESPONSIBLE TO MEET ALL REQUIREMENTS WITH CONSIDERATION TO SUPPORTING OR WORKING CLOSE TO LIVE ENERGIZED CABLES.

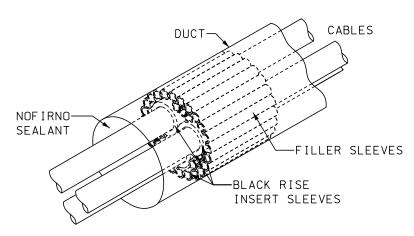
D	ISTRIBUTION CO Civil (NSTRUCTION Construction	STANDARD		DUC	CT OR	CABLE		
	TORONTO	Approved By:			SUPPOR	T IN PL	ACE SYS	STEM	
	HYDRO	Drafted By: B.D.	Designed By:	Original Issue:	2002-11-25	Scale: N.T.S.	Rev: 3	31-1350	4/4

<u>DUCT IDENTIFICATION IN GARAGE FLOOR,</u> CEILING OR INTERIOR WALL

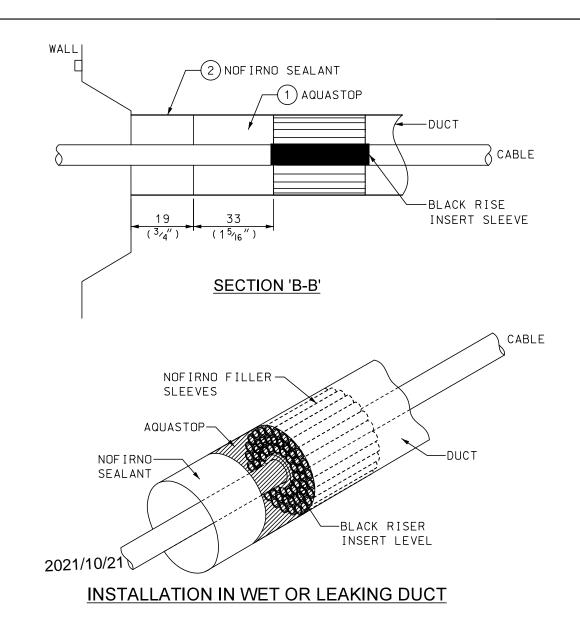


DUCT IDENTIFICATION IN GROUND LEVEL FLOOR UNDER CARPET OR FLOORING

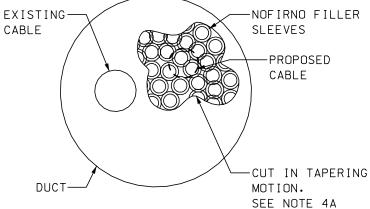

NOTES: ⚠


- 1) CABLE MARKER TO BE INSTALLED FLUSH WITH SURFACE OF DUCT STRUCTURE.
- 2) PAINT STRIP TO BE 600 mm (2'-0") WIDE OR MAXIMUM WIDTH OF DUCT STRUCTURE.
- 3) FLUORESCENT PAINT TO BE RED EXTERIOR ACRYLIC LATEX.
- 4) LETTERING TO BE BLACK EXTERIOR LATEX PAINT.
- 5) PERMANENT IDENTIFICATION MUST BE COMPLETED BEFORE THE SERVICE IS ENERGIZED.

DISTRIBUTION CO	ONSTRUCTION Construction	STANDARD	CONDUITS					
TORONTO	Approved By: J.D. 201	2-11-09	IDENTIF	ICATION OF HYI	DRO DUC	TS IN BU	ILDING COMPLE	EXES
HYDRO	Drafted By:	Designed By:	Original Issue:	2004-03-31	Scale: N.T.S.	Rev: 1	31-1360	1/1


DUCT BANK FRONT VIEW

INSTALLATION IN DRY DUCT


	DISTRIBUTION CONSTRUCTION STANDARD Civil Construction Approved By:				DUCT SEALANT INSTALLATION					
Approved By: 2021/10/21					DUCT SEAL	-AIN I	NO I ALI	LATION		
HYDRO	1 '	Designed By: B.D.	Original Issu	ue: 2015-11-	23	Scale:	Rev: 2	31-1400	1/3	

-DUCT

-SEE DETAIL 'A'

ADDING ADDITIONAL CABLES

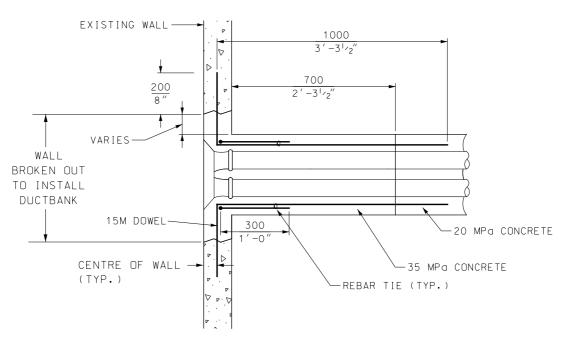
EXISTING

PROPOSED

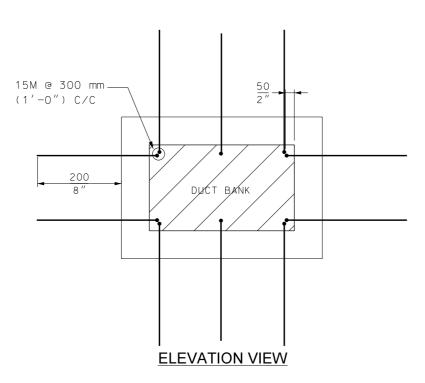
CABLE

CABLE

DETAIL 'A'


DISTRIBUTION CC Civil (NSTRUCTION Construction	STANDARD		DI	ICT CEAL	^ NIT 11	NCTALI	ATION	
Approved By: 2021/10/21				טט	JCT SEAL	ANIII	NSTALI	LATION	
HYDRO	Drafted By:	Designed By: B · D ·	Original Issu	ue: 2015-11-23		Scale:	Rev: 2	31-1400	2/3

		BILL OF MATERIALS FOR 31-1400		
	ITEM	DESCRIPTION	ΙΤΕΜ	QTY
	NO.	DESCRIPTION	I.D.	A
*	1	DUCT SEALANT KIT	9665194	1
+	2	SEALANT	9665195	1
+	3	CAULKING GUN	2730104	1


- + AS REQUIRED
- * DUCT SEALANT KIT INCLUDES:
 - NOFIRNO FILLER SLEEVES
 - BLACK RISE INSERT SLEEVES
 - AQUASTOP

- 1) SEALANT SHALL BE APPLIED TO:
- 2
- DUCTS EXITING THESL STRUCTURES (POLES, CABLE CHAMBERS, PADMOUNTS, SPLICE VAULTS, TAP/SPLICE BOXES AND VAULTS) WHEN FEEDING INTO CUSTOMER'S BUILDING/VAULTS AND ALSO DUCTS AT CUSTOMER'S BUILDING/VAULTS ENTRANCE POINT;
- LOCATIONS WHERE EXISTING SEALANT (STOCK CODES 8940011, 9656790 OR 9656791) IS NOT ADEQUATE.
- 2) INSTALLATION IN DRY DUCT (AS PER SECTION 'A-A'):
 - A) CLEAN THE DUCT AND CABLE THOROUGHLY USING A CLOTH TO REMOVE ALL DEBRIS AND DIRT FROM INSIDE THE DUCT. DO NOT USE HAND SANITIZER CLOTHS OR CLOTHS MIXED WITH SOAPY MIXTURE.
 - B) PLACE BLACK RISE INSERT SLEEVES AROUND EACH CABLE.
 - C) FILL THE REMAINDER OF THE SPACE IN DUCT WITH RED NOFIRNO FILLER SLEEVES 22/15 (22 mm ($\frac{9}{10}$ ") OUTER DIAMETER AND 15 mm ($\frac{3}{5}$ ") INNER DIAMETER).
 - D) ADJUST THE SLEEVES SO THAT THEY ARE ALIGNED AND RECESSED, BY USING NEEDLE NOSE PLIERS.
 - E) OVERFILL THE DUCT WITH NOFIRNO SEALANT.
 - F) USING A WET CLOTH, COMPRESS AND SMOOTHEN THE NOFIRNO SEALANT FOR A SMOOTH SURFACE.
- 3) INSTALLATION IN WET OR LEAKING DUCTS (AS PER SECTION 'B-B'):
 - A) FOLLOW PROCEDURES AS PER 2A, 2B AND 2C.
 - B) INSERT THE AQUASTOP INTO THE DUCT AGAINST THE NOFIRNO FILLER SLEEVES.
 - C) TIGHTLY COMPRESS THE AQUASTOP AGAINST THE FILLER SLEEVES BY HAND OR BY USING A WOOD PIECE OR ANY OBJECT WITH A FLAT SURFACE.
 - D) ENSURE THE EDGES ARE PROPERLY SEALED BY SMEARING THE AQUASTOP RUBBER ALONG THE EDGES OF THE DUCT WALL. ENSURE THAT THERE IS AT LEAST 19 mm (3 / $_4$ ") OF SPACING BETWEEN THE FINAL LAYER OF AQUASTOP STRIP AND DUCT EDGE.
 - E) INSPECT THE DUCT TO ENSURE THAT THE LEAKAGE HAS STOPPED. IN ORDER TO EXPEDITE DRYING TIME, USE A DRYER. DO NOT USE A HEAT GUN, AS PROLONGED USE WILL DAMAGE CABLE.
 - F) APPLY THE NOFIRNO SEALANT OVER THE AQUASTOP UNTIL THE DUCT OVERFLOWS.
 - G) USING A WET CLOTH, COMPRESS AND SMOOTHEN THE NOFIRNO SEALANT.
- 4) ADDING ADDITIONAL CABLES TO DRY DUCT CONTAINING NOFIRNO SEALANT (AS PER DETAIL 'A'):
 - A) USING A KNIFE, PENETRATE THE NOFIRNO SEALANT LAYER (AND AQUASTOP LAYER, IF APPLICABLE) AND BEGIN TO CUT SEALANT WIDE ENOUGH TO ACCOMMODATE THE OUTER DIAMETER OF THE CABLE TO BE PULLED INTO THE DUCT. A TAPERING MOTION SHALL BE USED TO ENSURE APPROPRIATE MASS IS AVAILABLE FOR RE-SEAL.
 - B) REMOVE THE APPROPRIATE AMOUNT OF NOFIRNO FILLER SLEEVES, IN ORDER TO ACCOMMODATE THE OUTER DIAMETER OF THE CABLE TO BE PULLED INTO THE DUCT.
 - C) PULL THE DESIRED CABLE THROUGH THE DUCT AND ADD A BLACK RISE INSERT SLEEVE AROUND THE CABLE.
 - D) PUSH THE RISE INSERT SLEEVES INTO THE DUCT AT A DEPTH OF 19 mm (3/4") FROM THE DUCT OPENING.
 - E) FOLLOW PROCEDURES AS PER 2D AND 2E.

	DISTRIBUTION CONSTRUCTION STANDARD Civil Construction Approved By:			DUCT SEALANT INSTALLATION					
TORONTO	Approved By: 20	21/10/21		DOCTS	EALANTI	NOTALI	LATION		
HYDRO	Drafted By:	Designed By: B.D.	Original Iss	ue: 2015-11-23	Scale:	Rev: 2	31-1400	3/3	

CONNECTION INTO EXISTING WALL

DISTRIBUTION CO	ONSTRUCTION Construction	STANDARD	CONDUITS NEW DUCT BANK RECESS					
TORONTO	Approved By: B.D. 20	19-03-22	INSTALLATION IN EXISTING STRUCTURES					
/ HYDRO	Drafted By: B • D •	Designed By: B.D.	Original Issue: B.D.	2019-03-22	Scale: N.T.S.	Rev: 0	31-1600	1/2

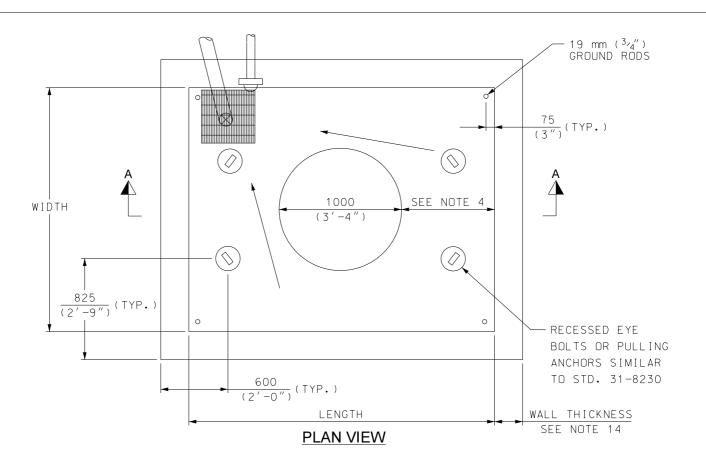
- 1) DRILL 15M DOWEL BARS INTO EXISTING CONCRETE WALL FOR A LENGTH OF AT LEAST 200 mm (8"). USE HILTI HY-200 CHEMICAL ADHESIVE ANCHORS ACCORDING TO THE MANUFACTURERS INSTRUCTIONS.
- ALL REINFORCEMENT BARS SHALL CONFORM TO LATEST CSA STANDARD G30.18, Fy=400 MPa.
- WITHIN 700 MM OF EXTERIOR WALL FACE, CONCRETE SHALL HAVE A MINIMUM 28-DAY COMPRESSIVE STRENGTH OF 35 MPa AND EXPOSURE CLASS OF C-1 AS DEFINED IN CSA A23.1.
- 4) FOR CABLE CHAMBERS, IF CABLE PULLING LOOPS ARE REQUIRED, INSTALL IN ACCORDANCE TO TORONTO HYDRO STANDARD 31-8220, CABLE PULLING LOOP SHALL BE IN-LINE WITH AND ON OPPOSITE WALLS OF EACH DUCT FACE (TYPICAL 300 mm (1'-0") FROM FINISHED FLOOR).
- DUCT BANK RECESS INSTALLATION SHALL APPLY TO DUCT CONFIGURATIONS GREATER THAN 6 DUCTS. NUMBER OF DUCTS WITHIN RECESS SHALL NOT EXCEED 24. DUCT CONFIGURATIONS SHALL BE IN ACCORDANCE WITH STD. 31-1120.
- FOR DUCT BANK RECESS INSTALLED IN EXISTING STRUCTURES, CLEARANCES SHALL BE AS FOLLOWS:
 - MIN. 400 mm (1'-4") FROM CEILING;
 - MIN. 400 mm (1'-4") FROM ADJACENT WALLS;
 - MIN. 400 mm (1'-4") FROM OTHER DUCT BANKS.
 - MIN. 400 mm (1'-4") FROM FLOOR OR, IF APPLICABLE, MIN. 100 mm (4") ABOVE BACKWATER VALVE.
- TO PREVENT DAMAGE TO REINFORCEMENT BARS ADJACENT TO RECESS, SAW OVERRUN SHALL BE AVOIDED DURING RECESS INSTALLATION.
- INSTALLATION SHALL CONFORM TO THE LATEST EDITION OF TORONTO HYDRO TECHNICAL SPECIFICATION FOR CIVIL CONSTRUCTION WORK CV-CON-01.
- THE CONTRACTOR SHALL ENSURE THAT THE WALL IS STRUCTURALLY SOUND PRIOR TO COMMENCING WORK, MINIMUM WALL THICKNESS SHALL BE 200 mm (8"), OTHERWISE CORE DRILLING SHALL BE USED FOR STRUCTURES HAVING WALL THICKNESS LESS THAN 200 mm (8"). NO RECESS SHALL BE INSTALLED IN A SUBMERSIBLE TRANSFORMER VAULT.
- 10) DUCT BANK RECESS SHALL BE PERFORMED BY AN APPROVED TORONTO HYDRO CONTRACTOR TO ENSURE THAT CONSTRUCTION COMPLIES WITH TORONTO HYDRO CIVIL SPECIFICATIONS, STANDARDS AND ALL RELEVANT ACCEPTABLE PRACTICES AND METHODS APPROVED BY TORONTO HYDRO.
- 11) THE CONTRACTOR SHALL PROVIDE TEMPORARY PROTECTION TO ALL CABLES LOCATED INSIDE THE STRUCTURE, AND WILL CLEAN, REMOVE AND DISPOSE OF ALL DEBRIS RESULTING FROM THE CONSTRUCTION.
- 12) THIS INSTALLATION SHALL NOT APPLY TO STRUCTURES CONSTRUCTED WITH CONCRETE BLOCKS/BRICKS.

DISTRIBUTION CO	NSTRUCTION	STANDARD						
Civil Construction								
	Approved By:							
TORONTO	B.D. 20	19-03-22						
HYDRO	Drafted By:	Designed By:						

B.D.

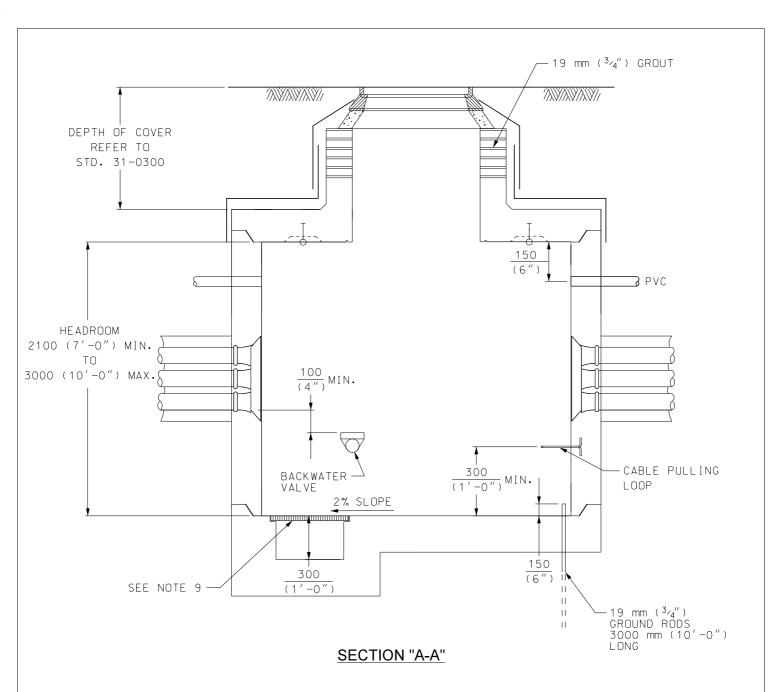
B.D.

CONDUITS **NEW DUCT BANK RECESS** INSTALLATION IN EXISTING STRUCTURES

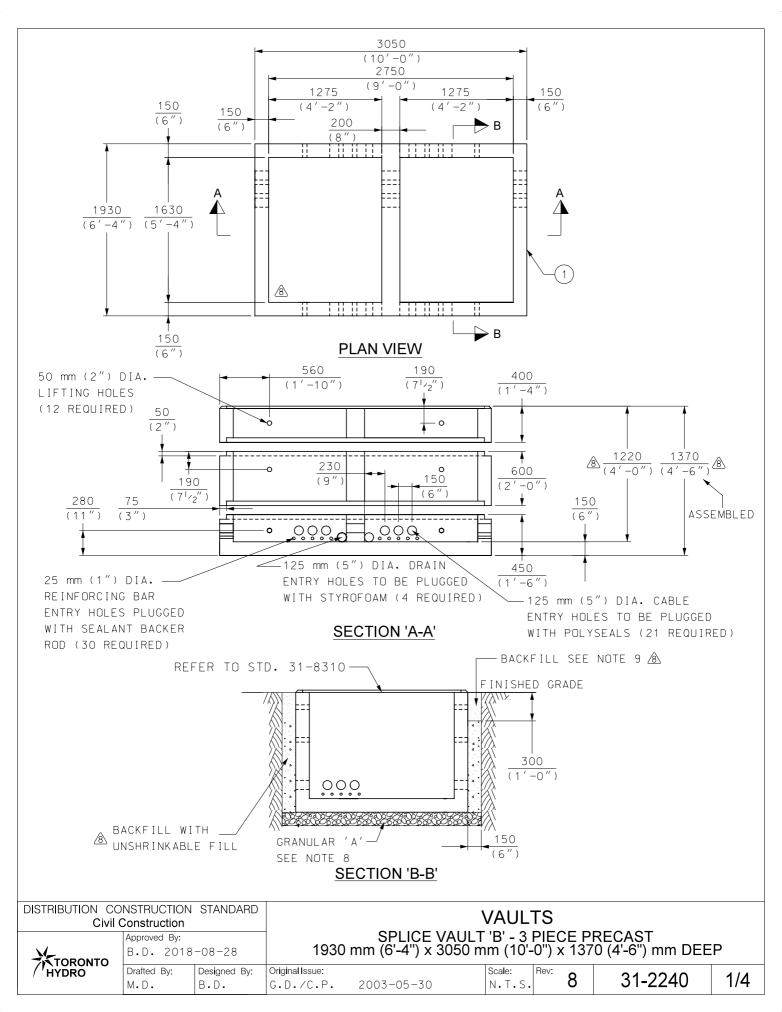

Rev:

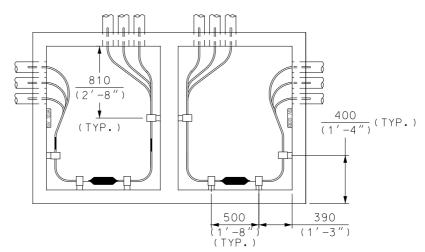
O

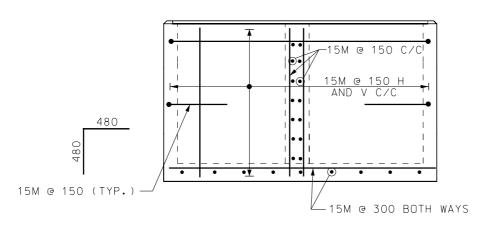
Original Issue: B.D. 2019-03-22 Scale: N.T.S.


31-1600

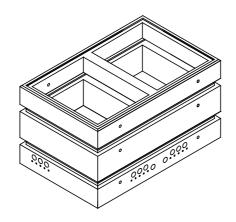
2/2


- 1) ROOF SLAB AND WALLS SHALL BE DESIGNED IN ACCORDANCE WITH CANADIAN HIGHWAY BRIDGE DESIGN CODE CAN/CSA-S6-06, CL-625-ONT LIVE LOADING.
- 2) ALL CONCRETE SHALL HAVE A MIN. 28-DAY COMPRESSIVE STRENGTH OF 35 MPg. CONCRETE MIX AND PLACEMENT SHALL CONFORM TO LATEST CSA-A23.1. ALL TESTING SHALL CONFORM TO LATEST CSA-A23.2.
- 3) ALL REINFORCEMENT BARS SHALL CONFORM TO LATEST CSA STANDARD G30.18, Fy=400 MPa.
- 4) MIN. DISTANCE FROM CABLE CHAMBER ACCESS CHIMNEY (NECK) OPENING SHALL BE 450 (1'-6"). FOR 1000 kcmil XLPE CABLES, REFER TO STD. 31-2170 FOR MIN. DISTANCE FROM THE NECK.
 - 5) THE EXTERIOR SURFACE OF THE ROOF AND NECK SHALL BE WATERPROOFED WITH A BITUMEN MEMBRANE.
 - 6) PARGING MIX ON ALL BRICK WORK SHALL BE ONE PART NON-SHRINK CEMENT AND THREE PARTS SAND AND APPLIED 15 mm THICK.
 - 7) CABLE PULLING LOOP SHALL BE IN-LINE WITH AND ON OPPOSITE WALL OF EACH DUCT FACE (TYPICAL 300 mm (1'-0'') FROM FINISH FLOOR).
 - 8) SUMP HOLE REMOVABLE TYPE GRATING, SHALL BE GALVANIZED AS PER LATEST CSA-G-164.
 - 9) EXACT LOCATION OF FLOOR DRAIN OR SUMP HOLE SHALL BE DETERMINED AS PER CONSTRUCTION DRAWING.
 - 10) LOCATION AND CONFIGURATION OF DUCT BANK SHALL BE AS DETAILED ON PROJECT CONSTRUCTION DRAWING.
 - 11) CHAMBER SIZES SHALL BE AS SHOWN IN TABLE.
 - 12) STRUCTURAL DESIGN OF PRECAST CHAMBER IS THE RESPONSIBILITY OF THE CONTRACTOR. DRAWINGS SHALL BE STAMPED AND SIGNED BY CONTRACTOR'S PROFESSIONAL ENGINEER.
 - 13) CONTRACTOR OR MANUFACTURER SHALL SUBMIT SHOP DRAWINGS FOR REVIEW AND APPROVAL BY TORONTO HYDRO PRIOR TO FABRICATION.
 - 14) MIN. WALL THICKNESS SHALL BE 200 mm (8").
 - 15) IF CHAMBER WALLS ARE BUILT IN SECTIONS, SEAL BETWEEN SECTIONS SHALL BE INSTALLED TO PREVENT WATER FROM ENTERING THE CABLE CHAMBER.
 - 16) ALL DUCT HOLES SHALL BE PLUGGED WITH DUCT PLUGS.
 - 17) 4 GROUND RODS PROVISION SHALL BE PLACED IN FOUR CORNERS OF THE CABLE CHAMBER.
 - 18) DELIVERY IS MADE BY CRANE-EQUIPPED TRUCKS, EXCAVATION SHALL BE READY, SAFE AND ACCESSIBLE FOR UNLOADING FROM THE REAR OF THE TRUCK, MIN, OVERHEAD CLEARANCE OF 5500 mm (18'-0") IS REQUIRED.

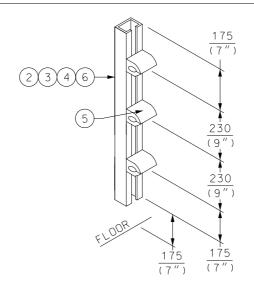

DISTRIBUTION CONSTRUCTION STANDARD Civil Construction			CABLE CHAMBERS					
TORONTO	Approved By: J.D. 20	14-10-08		MBER				
HYDRO	Drafted By: Y.A.	Designed By:	Original Issue: G.D./L.G.	2000-12-30	Scale: Rev:	9	31-2160	1/2


CHAMBER SIZES										
TYPE #	WIDTH	LENGTH								
1	2000 (6'-8")	2500 (8'-4")								
2	2000 (6'-8")	3000 (10′-0″)								
3	2500 (8'-4")	3000 (10'-0")								
4	2500 (8'-4")	3500 (11'-6")								
5	2500 (8'-4")	4000 (13′-4″)								
6	3000 (10'-0")	3000 (10'-0")								
7	3000 (10'-0")	3500 (11'-8")								
8	3000 (10′-0″)	4000 (13'-4")								
9	3500 (11'-8")	4000 (13′-4″)								

DISTRIBUTION CC Civil (NSTRUCTION Construction	STANDARD		CABL	E CHA	MBER	S	
TORONTO	Approved By: J.D. 20	14-10-08						
HYDRO	Drafted By: Y.A.	Designed By:	Original Issue: G.D./L.G.	2000-12-30	Scale: N.T.S.	Rev: 9	31-2160	2/2



TYPICAL SPLICE RACKING



<u>DETAIL 'A'</u>
WALL AND FLOOR REINFORCEMENT

ISOMETRIC

DISTRIBUTION CO Civil C	NSTRUCTION Construction	STANDARD	VAULTS					
Approved By: B.D. 2018-08-28			1930	SPLICE VAUL mm (6'-4") x 3050				:P
HYDRO	Drafted By: M.D.	Designed By: B.D.	Original Issue: G.D./C.P.	2003-05-30	Scale: N.T.S.	Rev: 8	31-2240	2/4

CABLE SUPPORT

NOTES:

MATERIAL:

- 1) CONCRETE SHALL HAVE A MIN. 28-DAY COMPRESSIVE STRENGTH OF 35 MPa. CONCRETE PRODUCTION AND PLACEMENT SHALL CONFORM TO LATEST CSA-A23.1. ALL TESTING SHALL CONFORM TO LATEST CSA-A23.2.
- 2) MANUFACTURER SHALL ADD DATE OF MANUFACTURE STAMP ON ALL PRECAST UNITS.
- 3) EXPOSURE CLASSIFICATION TO FREEZING AND THAWING IN A SATURATED CONDITION BUT WITH NO CHLORIDES SHALL BE F-1. ALL REINFORCING TO CONFORM TO LATEST CSA STANDARD G30.18, Fy = 400 MPa.
- 4) CONCRETE COVER ON PRECAST UNIT SHALL BE 50 mm (2").
- 5) ALL EXPOSED EDGES SHALL HAVE 25 mm (1") CHAMFER.
- 6) LIFTING HOLES CAN BE INSTALLED IN FOUNDATION WALLS FOR MANUFACTURER'S LIFTING PREFERENCE.
- 7) 4-LIFTING ANCHORS FOR LIFTING PURPOSES BY OTHERS SHALL BE PROVIDED ON THE INSIDE OF ALL FOUNDATION WALLS, LIFTING ANCHORS SHALL BE GALVANIZED, LIFTING ANCHORS SHALL BE CAPABLE OF LIFTING THE PRECAST UNITS AND THIS SHALL BE CERTIFIED BY MANUFACTURER PRIOR TO DELIVERY.

INSTALLATION:

DISTRIBUTION CONSTRUCTION STANDARD

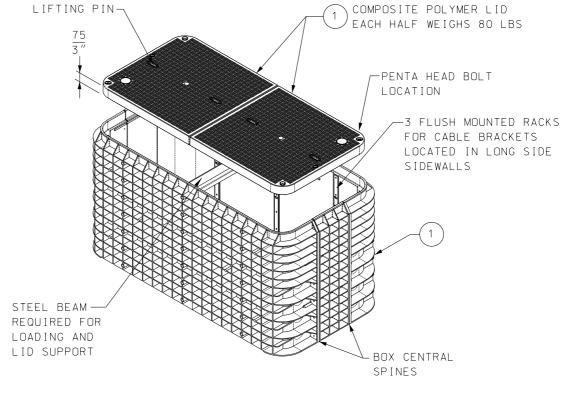
- 8) PLACE 150 mm (6") GRANULAR "A" BEDDING ON UNDISTURBED SOIL CAPABLE OF SUSTAINING 75 KPa AND COMPACT TO 95% STANDARD PROCTOR DENSITY.
- ≜ 10) TORONTO HYDRO INSPECTOR SHALL BE PRESENT DURING THE INSTALLATION, 24-HOUR NOTICE IS
 REQUIRED PRIOR TO STARTING THE INSTALLATION.
- ≜ 11) DRAIN CONNECTION SHALL BE AS PER STANDARD 31-7100.
- ⚠ 13) CONTRACTOR TO PLUG ALL HOLES (LIFTING AND GROUNDING) AND PARGED PRIOR TO BACKFILLING.
- A14) PRECAST UNITS ARE DELIVERED BY CRANE-EQUIPPED TRUCKS. EXCAVATION MUST BE READY, SAFE AND ACCESSIBLE FOR UNLOADING FROM THE REAR OF THE TRUCK. MIN. OVERHEAD CLEARANCE OF 5500 mm (18'-0") IS REQUIRED. CONTRACTOR SHALL ASSIST SUPPLIER IN LOWERING THE PRECAST UNITS INTO EXCAVATION.

Civil (Construction			VAULIS				
	Approved By: B.D. 2018	-08-28	1930	SPLICE VAUL mm (6'-4") x 3050 r				P
/ HYDRO	Drafted By: M.D.	Designed By: B.D.	Original Issue: G.D./C.P.	2003-05-30	Scale: N.T.S.	Rev: 8	31-2240	3/4

	BILL OF MATERIALS FOR 31-2240			
ITEM NO.	DESCRIPTION		ITEM I.D.	QTY
1 1	PRECAST CONCRETE 3 PIECE SUBMERSIBLE SPLICE VAULT C/W FRA CHECKER PLATES AND SUPPORT BEAMS 1930 X 3050 X 1370 mm DE		3540040	1
_ /	CHANNEL STEEL GALV, 41 mm $ imes$ 41 mm $ imes$ 3000 mm (1 5 / $_{8}^{\prime\prime}$ $ imes$ 1 5 / $_{8}^{\prime\prime}$ $ imes$ PUNCHED	10′)	3520220	4
3	ANCHOR STUD BOLT WEDGE 3/8" X 3"	2500057	24	
4	WASHER BELLIVILLE 1/2"		2530100	24
5	CLAMP CABLE 11/4" HOLE THERMOPLASTIC		9663121	24
6	NUT PENTA 1/2"-13 UNC ZINC ALLOY		2520095	24
	ASSOCIATED STANDARDS	***************************************		********
7	FRAME, BEAMS AND COVER	STD.	31-8310	1
8	GROUNDING	STD.	18-5400	1
9	VAULT LOCATION NUMBER	STD.	21-3100	1
10	DRAINING STRUCTURES	STD.	31-7100	1

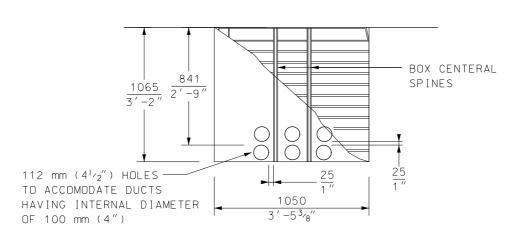
DISTRIBUTION	CONSTRUCTION	STANDARD
С	ivil Construction	

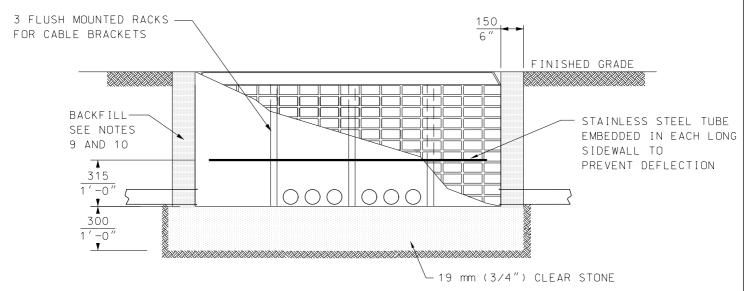
TORONTO HYDRO


Approved By: B.D. 2018-08-28

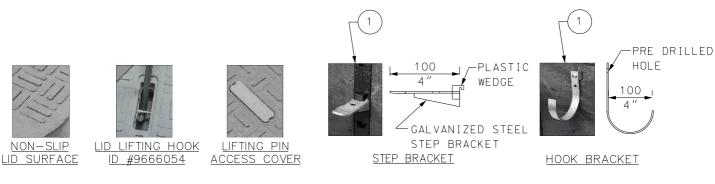
VAULTS SPLICE VAULT 'B' - 3 PIECE PRECAST 1930 mm (6'-4") x 3050 mm (10'-0") x 1370 (4'-6") mm DEEP

Original Issue: Drafted By: Designed By: M.D. B.D. G.D./C.P. 2003-05-30 Scale: 31-2240 N.T.S.


4/4



ISOMETRIC VIEW **(**)


	DISTRIBUTION CONSTRUCTION STANDARD Civil Construction			SPLICE/TAP BOX					
TORONTO	Approved By: B.D. 2020	-05-15	TYPE 'C' - FOR PRIMARY CABLES						
HYDRO	Drafted By:	Designed By: B.D.	Original Issue: B.D. 2019-08-26		Scale: N.T.S.	Rev:	31-3160	1/3	

BOX SIDE VIEW - SHORT SIDEWALL A

BOX SIDE VIEW - LONG SIDEWALL A

LID DETAIL A

CABLE BRACKETS A

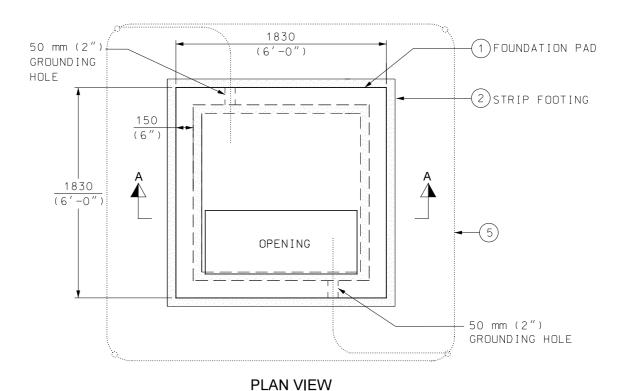
DISTRIBUTION CONSTRUCTION STANDARD Civil Construction			SPLICE/TAP BOX					
TORONTO	Approved By: B.D. 2020)-05-15	TYP	E 'C' - FOR PRIMARY	/ C/	ABLES		
HYDRO	Drafted By:	Designed By: B.D.	Original Issue: B.D. 2019-08-26	Scale: Rev: N.T.S.	1	31-3160	2/3	

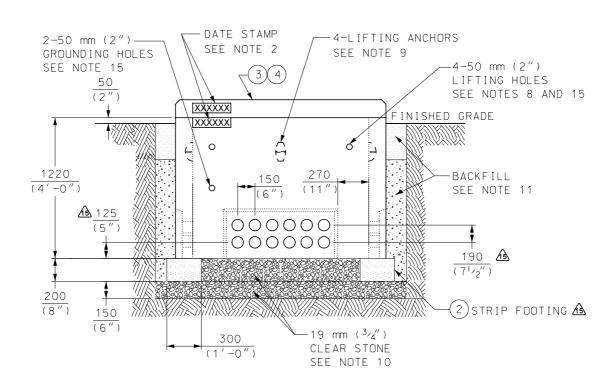
<u></u>

	BOM LEG	SEND		
А	SPLICE/TAP	вох	TYPE	′ C ′

	BILL OF MATERIALS FOR 31-3160								
ITEM NO.	DESCRIPTION	ITEM I.D.	QTY A						
1	1 - 915×1920×1065 mm HDPE BOX 1 - COMPOSITE POLYMER LID 4 - 8 mm PENTA HEAD BOLTS 4 - WASHERS 2 - 4" STEP BRACKETS (WITH 2 WEDGES) 2 - 4" HOOK BRACKETS	9665468	1						

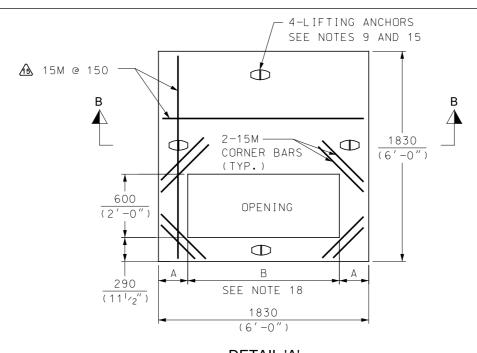
NOTES:∕∧

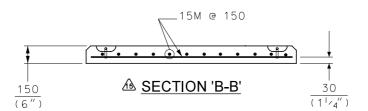

- 1) FOR LEGACY LID REPLACEMENTS ONLY, REFER TO FOLLOWING STOCK CODES:
 - COVER GREEN HDPE WITH LOCKING ASSEMBLY: ID# 9653405
 - PENTA HEAD BOLT LOCKING ASSEMBLY: ID# 9663408
- 2) DRILL A MAX. OF 6 HOLES IN EACH SIDEWALL TO ACCOMMODATE DUCTS HAVING AN INTERNAL DIAMETER OF 100 mm (4") BY USING A STANDARD HOLE SAW OR DRILL BIT. AVOID DRILLING HOLES OR CUTTING AT THE FOLLOWING LOCATIONS:
 - THE BOX'S CENTRAL SPINE (LOCATED IN THE SHORT SIDEWALLS),
 - THE EMBEDDED STAINLESS STEEL TUBES (LOCATED IN THE LONG SIDEWALLS),
 - THE FLUSH MOUNTED SIDEWALL RACKS (LOCATED IN THE LONG SIDEWALLS),
 - TOP 300 mm (1'-0") OF THE BOX.
- 3) BOX SHALL BE INSTALLED IN GRASSY OR PAVED BOULEVARDS, FOR INSTALLATION IN SIDEWALKS, APPROVAL REQUIRED FROM THE CITY OF TORONTO, FOR OPERATIONAL REASONS, BOX SHALL NOT BE INSTALLED IN ROADS, DRIVEWAYS OR AREAS WITH CONSISTENT VEHICULAR TRAFFIC.
- 4) TO REMOVE A FROZEN LID, MANUFACTURER RECOMMENDS HITTING AROUND PENTA BOLT LOCATIONS WITH SLEDGE HAMMER TO LOOSEN BOLTS.
- 5) LIFTING HOOK SHALL BE USED TO REMOVE LID (ITEM ID# 9666054).

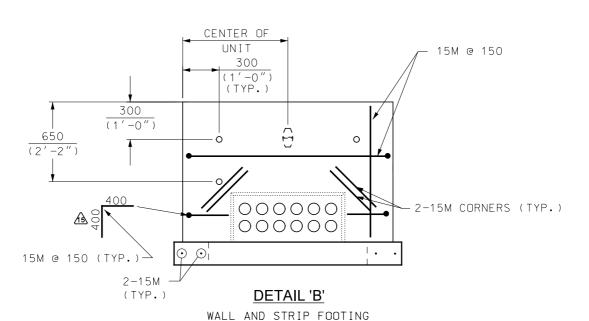

INSTALLATION NOTES: 1

DIOTRIDITION CONOTRICATION OTANDARD

- 6) EXCAVATE 150 mm (6") LARGER THAN THE WIDTH AND LENGTH OF THE BOX.
- 7) EXCAVATE 300 mm (1'-0") DEEPER THAN THE OVERALL DEPTH OF THE BOX. TAMP THE BOTTOM OF THE EXCAVATION TO COMPRESS AND FLATTEN ANY LOOSE SOIL.
- 8) PLACE 300 mm (1' -0") OF 19 mm (34") CRUSHED STONE BEDDING OVER THE ENTIRE FLOOR OF THE EXCAVATION. THE CRUSHED STONE SHALL BE FREE OF SOIL AND OTHER ORGANIC MATTER. THIS PREVENTS SETTLEMENT, AIDS IN DRAINAGE, AND PROVIDES A SOLID BEDDING. AS AN ALTERNATIVE, A DRY MIX OF CEMENT AND CRUSHED ROCK IN A 1:10 RATIO MAY BE USED TO FORM A HIGHER STRENGTH BEDDING.
- 9) PLACE THE BOX IN THE EXCAVATION AND LEVEL SO THAT THE BOX IS FLUSH WITH FINISHED GRADE BY ADDING/ADJUSTING THE BEDDING.
- 10)COMPLETE EXCAVATION SHALL BE BACKFILLED WITH UNSHRINKABLE FILL TO WITHIN 100 mm (4") FROM FINISHED GRADE. CARE SHALL BE TAKEN SO NOT TO CAUSE EXCESSIVE DAMAGE TO THE BOX'S CELLULAR RIBS DURING THE BACKFILLING PROCESS.
- 11)BACKFILL THE REMAINING 100 mm (4") TO FINISHED GRADE AS PER SPECIFICATION #CV-CON-01 AND/OR CITY OF TORONTO'S LATEST BACKFILLING REQUIREMENT.


Civil (Construction	STAINDARD	SPLICE/TAP BOX						
TORONTO	Approved By: B.D. 2020)-05-15	TYPE '(TYPE 'C' - FOR PRIMARY CABLES					
HYDRO	Drafted By:	Designed By: B.D.	Original Issue: B.D. 2019-08-26	Scale: Rev:	1	31-3160	3/3		




DISTRIBUTION CONSTRUCTION STANDARD <u> 13</u> PAD-MOUNTS **Civil Construction** THREE PHASE PRECAST PAD-MOUNT Approved By: 1830 mm (6'-0") x 1830 mm (6'-0") x 1220 mm (4'-0") J.D. 2015-11-13 TORONTO HYDRO Original Issue: Scale: Drafted By: Designed By: Rev: 31-4030 1/3 N.T.S B.W. J.D. C.P./G.D. 2002-07-11

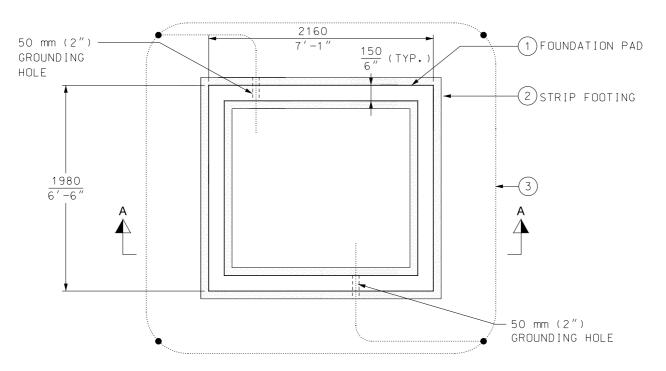
SECTION 'A-A'

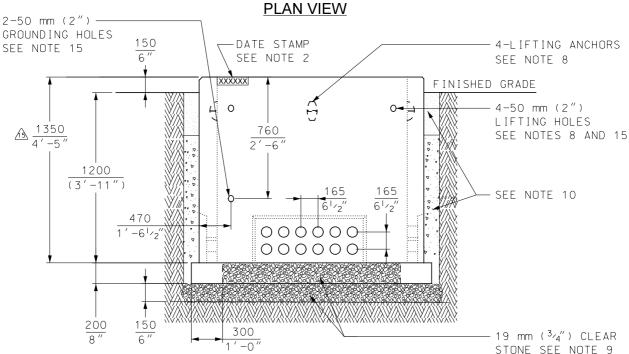
DETAIL 'A' LID REINFORCEMENT

DISTRIBUTION CC Civil (NSTRUCTION Construction	STANDARD	PAD-MOUNTS THREE PHASE PRECAST PAD-MOUNT					Æ
TORONTO	Approved By: J.D. 20	15-11-13	18	330 mm (6'-0") x 183				
HYDRO	Drafted By: B.W.	Designed By:	Original Issue:	2002-07-11	Scale: N.T.S.	Rev: 15	31-4030	2/3

REINFORCEMENT

MATERIALS:


- 1) CONCRETE SHALL HAVE A MINIMUM 28-DAY COMPRESSIVE STRENGTH OF 35 MPa, CONCRETE PRODUCTION AND PLACEMENT SHALL CONFORM TO LATEST EDITION OF CSA-A23.1. ALL TESTING SHALL CONFORM TO LATEST CSA-A23.2.
- 2) MANUFACTURER SHALL ADD DATE OF MANUFACTURE STAMP ON ALL PRECAST UNITS.
- 3) EXPOSURE CLASSIFICATION TO FREEZING AND THAWING IN A SATURATED CONDITION BUT WITH NO CHLORIDES SHALL BE F-1. ALL REINFORCING SHALL CONFORM TO LATEST EDITION OF CSA STANDARD G30.18, Fy = 400 MPa.
- \triangle 4) CONCRETE COVER ON PRECAST STRIP FOOTING SHALL BE 70 mm (2^{3} / $_{4}''$), ALL OTHER SHALL BE 30 mm (1^{1} / $_{4}''$).
 - 5) ALL EXPOSED EDGES SHALL HAVE 25 mm (1") CHAMFER.
 - 6) PROVIDE 90° STANDARD HOOK FOR WALL HORIZONTAL REINFORCING BARS.
 - 7) 4 13 mm ($\frac{1}{2}$ ") THREADED INSERTS FOR TRANSFORMER MOUNTING SHALL BE ADDED. THE INSERTS SHALL BE PLUGGED BY THE MANUFACTURER TO PREVENT ENTRY OF FOREIGN MATTER DURING TRANSIT.
 - 8) LIFTING HOLES CAN BE INSTALLED IN FOUNDATION WALLS FOR MANUFACTURER'S LIFTING PREFERENCE.
- 4-LIFTING ANCHORS FOR LIFTING PURPOSES SHALL BE PROVIDED ON THE INSIDE OF ALL FOUNDATION WALLS, ON TOP OF STRIP FOOTING AND ON TOP OF SLAB AS SHOWN IN THIS STANDARD, LIFTING ANCHORS SHALL BE GALVANIZED, LIFTING ANCHORS SHALL BE CAPABLE OF LIFTING THE PRECAST UNITS AND THIS SHALL BE CONFIRMED BY THE MANUFACTURER.


INSTALLATION:

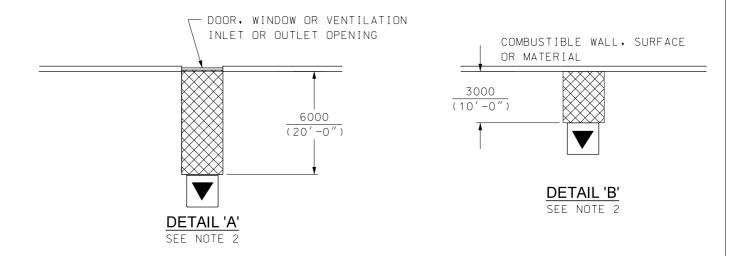
- 10) PLACE 19 mm (3 / $_{4}$ ") CLEAR STONE BEDDING ON UNDISTURBED SOIL CAPABLE OF SUSTAINING 75 kPa and compact to 98% standard proctor density.
- 11) EXCAVATION SHALL BE BACKFILLED TO FINISHED GRADE AS PER TORONTO HYDRO CIVIL SPECIFICATION CV-CON-01 CLAUSE 5.1.17 AND/OR CITY OF TORONTO'S LATEST BACKFILLING REQUIREMENT.
- 12) TORONTO HYDRO INSPECTOR SHALL BE PRESENT DURING THE INSTALLATION, 24-HOUR NOTICE IS REQUIRED PRIOR TO STARTING THE INSTALLATION.
- 13) FOR VEHICULAR TRAFFIC REFER TO GUARD POSTS (BOLLARDS) STD. 31-4080. PAD-MOUNT LOCATION SHALL BE KEPT CLEAR OF OBSTRUCTIONS FOR ACCESS BY TORONTO HYDRO PERSONNEL AND EQUIPMENT.
- 14) UNUSED CABLE ENTRY DUCTS SHALL BE PLUGGED WITH DUCT PLUGS AND PARGED PRIOR TO BACKFILLING.
- 15) CONTRACTOR SHALL PLUG ALL HOLES (LIFTING AND GROUNDING) AND PARGED PRIOR TO BACKFILLING. CONTRACTOR SHALL PLUG LIFTING ANCHOR OPENINGS WITH CAULKING PRIOR TO PLACEMENT OF TRANSFORMER.
- 16) PRECAST UNITS SHALL BE DELIVERED BY CRANE-EQUIPPED TRUCKS, EXCAVATION SHALL BE READY, SAFE AND ACCESSIBLE FOR UNLOADING FROM THE REAR OF THE TRUCK, MINIMUM OVERHEAD CLEARANCE OF 5500 mm (18'-0") IS REQUIRED, CONTRACTOR SHALL ASSIST SUPPLIER IN LOWERING THE PRECAST UNITS INTO EXCAVATION.
- 17) CUSTOMER TO PROVIDE 3000 mm (10'-0") OF FLAT LEVEL GROUND SURFACE ON OPERATING SIDE (IN-FRONT) OF TRANSFORMER FOR OPERATIONAL NEEDS.
- 18) THE FOLLOWING LID (COVER) SHALL BE USED:
 - THREE PHASE TRANSFORMER PAD: ID# 3540022: A = 280 mm (11"), B = 1270 mm (4'-2")
 - THREE PHASE METERING PAD: ID# 9662541: A = 355 mm (1'-2''), B = 1120 mm (3'-8'')

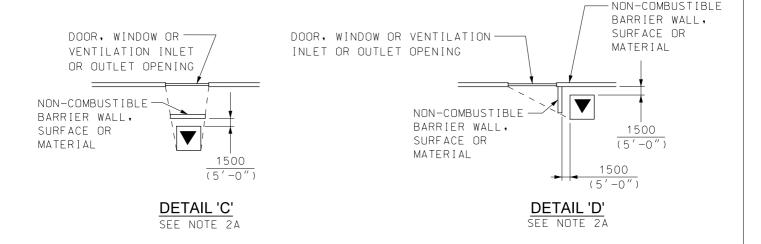
			$\overline{}$
	BILL OF MATERIALS FOR 31-4030		
ITEM NO.	DESCRIPTION	I TEM I . D .	QTY
1	FOUNDATION PAD 1830 mm x 1830 mm x 1220 mm DEEP	3540014	1
2	STRIP FOOTING (FLOOR) 1980 mm x 1980 mm x 200 mm, 300 mm WIDE	9656479	1
3	LID (COVER) 1830 mm x 1830 mm x 150 mm DEEP - FOR THREE PHASE TRANSFORMER PAD	3540022	1
4	LID (COVER) 1830 mm X 1830 mm X 150 mm - FOR THREE PHASE METERING PAD	9662541	1
	ASSOCIATED STANDARDS	***************************************	XXXX
5	GROUNDING REQUIREMENTS STI	D.18-5500) 1

DISTRIBUTION CO Civil (NSTRUCTION Construction	STANDARD	PAD-MOUNTS				Æ	
TORONTO	Approved By: THREE PHASE PRECAST PAD- J.D. 2015–11–13 1830 mm (6'-0") x 1830 mm (6'-0") x 1							
HYDRO	Drafted By: B.W.	Designed By:	Original Issue: C.P./G.D.	2002-07-11	Scale: N.T.S.	Rev: 15	31-4030	3/3

SECTION 'A-A'

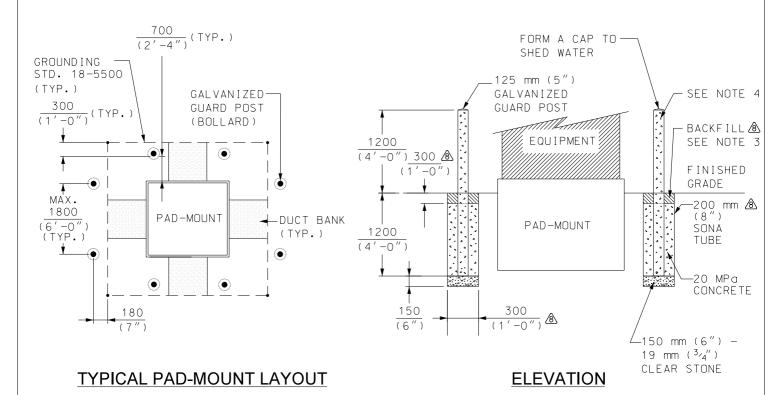
DISTRIBUTION CC Civil (NSTRUCTION Construction	STANDARD		PAD-MOUNTS					
TORONTO	Approved By: B.D. 20	20-09-25		THREE PHASE 1980 mm x	PMH 9/11 8 2160 mm x				
HYDRO	Drafted By: B • D •	Designed By: B.D.	Original Issue:	2002-07-11	Scale: Rev: 1	15	31-4050	1/2	

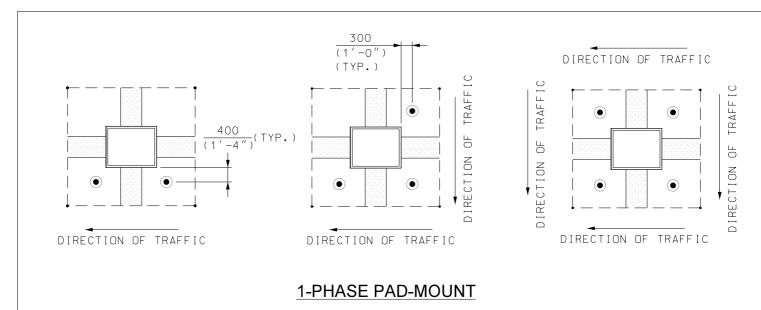

- 1) CONCRETE SHALL HAVE A MIN, 28-DAY COMPRESSIVE STRENGTH OF 35 MPa, CONCRETE PRODUCTION AND PLACEMENT SHALL CONFORM TO LATEST CSA-A23.1, ALL TESTING SHALL CONFORM TO LATEST CSA-A23.2,
- 2) MANUFACTURER SHALL ADD DATE OF MANUFACTURE STAMP ON ALL PRECAST UNITS.
- 3) EXPOSURE CLASSIFICATION TO FREEZING AND THAWING IN A SATURATED CONDITION BUT WITH NO CHLORIDES SHALL BE F-1.
- 4) ALL REINFORCING TO CONFORM TO LATEST CSA STANDARD G30.18, Fy = 400 MPa.
- 5) CONCRETE COVER ON PRECAST STRIP FOOTING SHALL BE 50 mm (2"), ALL OTHERS SHALL BE 30 mm (1 1 / $_{4}$ "). ALL EXPOSED EDGES SHALL HAVE 25 mm (1") CHAMFER.
- 6) PROVIDE 90° STANDARD HOOK FOR WALL HORIZONTAL REINFORCING BARS.
- 7) 4 13 mm ($\frac{1}{2}$ ") THREADED INSERTS FOR TRANSFORMER MOUNTING SHALL BE ADDED. THE INSERTS TO BE PLUGGED BY THE MANUFACTURER TO PREVENT ENTRY OF FOREIGN MATTER DURING TRANSIT.
- 8) LIFTING HOLES CAN BE INSTALLED IN FOUNDATION WALLS FOR MANUFACTURER'S LIFTING PREFERENCE.
 IN ADDITION, 4-LIFTING ANCHORS FOR LIFTING PURPOSES SHALL BE PROVIDED ON THE INSIDE OF ALL
 FOUNDATION WALLS AND ON TOP OF STRIP FOOTING AS SHOWN IN THIS STANDARD, LIFTING ANCHORS SHALL
 BE GALVANIZED, LIFTING ANCHORS SHALL BE CAPABLE OF LIFTING THE PRECAST UNITS AND THIS SHALL
 BE CERTIFIED BY MANUFACTURER'S PROFESSIONAL ENGINEER.

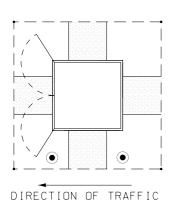

INSTALLATION:

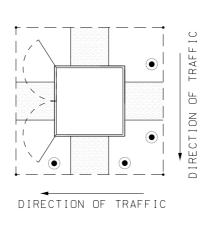
DICTRIBUTION CONCEDUCTION CTANDARD

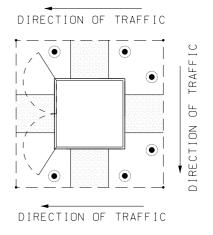
- 9) PLACE 19 mm (3/4") CLEAR STONE BEDDING ON UNDISTURBED SOIL CAPABLE OF SUSTAINING 75 kPg and compact to 98% standard proctor density.
- 10) EXCAVATION SHALL BE BACKFILLED TO FINISHED GRADE AS PER TORONTO HYDRO CIVIL SPECIFICATION CV-CON-01 CLAUSE 5.1.17 AND/OR CITY OF TORONTO'S LATEST BACKFILLING REQUIREMENT.
- 11) TORONTO HYDRO INSPECTOR SHALL BE PRESENT DURING THE INSTALLATION, 24-HOUR NOTICE IS REQUIRED PRIOR TO STARTING THE INSTALLATION.
- 12) FOR VEHICULAR TRAFFIC REFER TO GUARD POSTS (BOLLARDS) STD. 31-4080.
- 13) PAD-MOUNT LOCATION SHALL BE KEPT CLEAR OF OBSTRUCTIONS FOR ACCESS BY TORONTO HYDRO PERSONNEL AND EQUIPMENT.
- 14) UNUSED CABLE ENTRY DUCTS SHALL BE PLUGGED WITH DUCT PLUGS AND PARGED PRIOR TO BACKFILLING.
- 15) CONTRACTOR TO PLUG ALL HOLES (LIFTING AND GROUNDING) AND PARGED PRIOR TO BACKFILLING.
- 16) PRECAST UNITS ARE DELIVERED BY CRANE-EQUIPPED TRUCKS. EXCAVATION MUST BE READY, SAFE AND ACCESSIBLE FOR UNLOADING FROM THE REAR OF THE TRUCK. MIN. OVERHEAD CLEARANCE OF 5.5 m (18'-0") IS REQUIRED. CONTRACTOR SHALL ASSIST SUPPLIER IN LOWERING THE UNITS INTO EXCAVATION.
- 17) WHEN LOCATING PAD-MOUNT, A 3.0 m (10'-0") AREA OF FLAT GROUND SURFACE IS REQUIRED INFRONT OF THE OPERATING SIDE (DOOR SIDE) OF TRANSFORMER FOR OPERATIONAL NEEDS.
- 18) THE FOUNDATION SHALL BE ORIENTED WITH THE LONG SIDE (DOOR SIDE OF SWITCHGEAR) PARALLEL TO THE CURB. FOR SCADA-OPERATED SWITCHGEARS ENSURE THAT LOW VOLTAGE AND SWITCHING COMPARTMENTS ARE NOT IN CONFLICT WITH VEHICULAR AND PEDESTRIAN TRAFFIC.

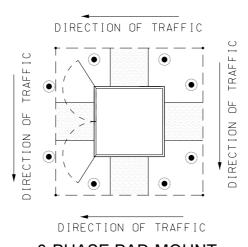

Civil (Construction	STANDARD	PAD-MOUNTS					
TORONTO	Approved By: B.D. 20	20-09-25		THREE PHASE 1980 mm x	PMH 9/11 SW 2160 mm x 135			
HYDRO	Drafted By: B • D •	Designed By:	Original Issue: G.D./C.P.	2002-07-11	Scale: Rev: 15	31-4050	2/2	

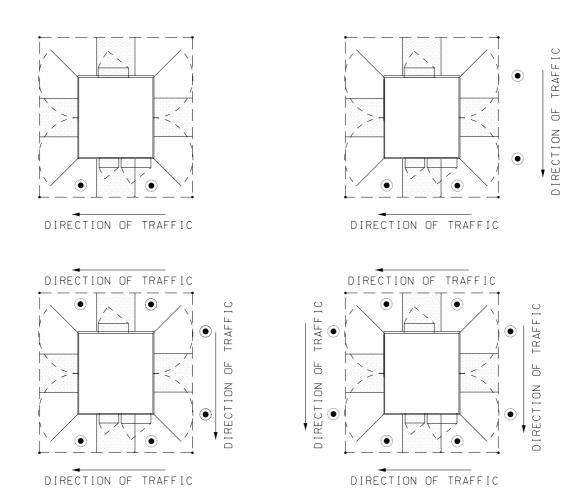

- 1) ALL NEW PADMOUNT TRANSFORMERS CONTAIN AN INTERNAL CURRENT LIMITING FUSE AND PRESSURE RELIEF DEVICE.
- 2) TRANSFORMERS WITHOUT INTERNAL CURRENT LIMTING FUSE SHALL BE INSTALLED 3000 mm (10'-0") FROM ANY COMBUSTIBLE SURFACE OR MATERIAL ON A BUILDING AND 6000 mm (20'-0") FROM ANY DOOR, WINDOW OR VENTILATION INLET OR OUTLET OPENING, EXCEPT WHERE:
 - A) A WALL OR A BARRIER WITH NON-COMBUSTIBLE SURFACES OR MATERIAL IS CONSTRUCTED BETWEEN THE TRANSFORMER AND ANY DOOR, WINDOW, VENTILATION INLET OR OUTLET OPENING, OR COMBUSTIBLE SURFACE OR MATERIAL ON A BUILDING; OR
 - B) THE TRANSFORMER IS PROTECTED BY AN INTERNAL CURRENT LIMITING FUSE AND EQUIPPED WITH PRESSURE RELIEF DEVICE WITH CLEARANCES AROUND THE TRANSFORMER AS PER STANDARD 31-4015.
- 3) NON-COMBUSTIBLE BARRIER WALL, SURFACE OR MATERIAL SHALL PROVIDE A MINIMUM OF 3 HOUR FIRE RATING, NON-COMBUSTIBLE BARRIER WALL, SURFACE OR MATERIAL SHALL EXTEND TO A PROJECTION LINE FROM THE CORNER OF THE TRANSFORMER TO THE FURTHEST CORNER OF THE DOOR, WINDOW, OR VENTILATION INLET OR OULET OPENING.
- 4) NON-COMBUSTIBLE BARRIER WALL, SURFACE OR MATERIAL WHEN REQUIRED, SHALL BE DESIGNED AND INSTALLED AT CUSTOMER'S EXPENSE, NON-COMBUSTIBLE BARRIER WALLS SHALL BE REINFORCED CONCRETE, BRICK OR CONCRETE BLOCK.
- 5) REFERENCE RULE 26-242 ONTARIO ELECTRICAL SAFETY CODE.

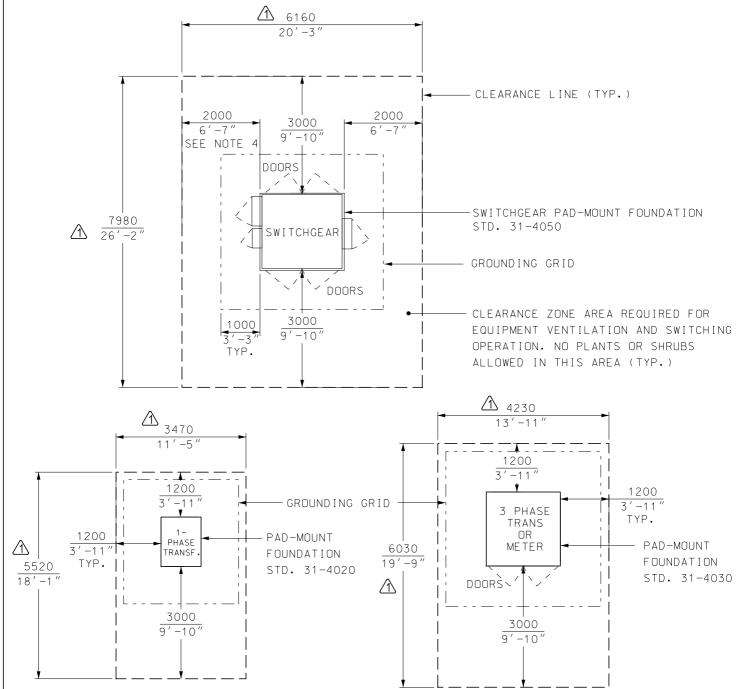

DISTRIBUTION CONSTRUCTION STANDARD Civil Construction				PADMOU	NT TRAN	NSFOR	RMERS	4
TORONTO	Approved By: B.D. 2018-08-17			MBUSTIBLE BA	RRIER WA	LL, SUR	FACE OR MATE	RIAL
HYDRO	Drafted By:	Designed By:	Original Issue: G.D./L.G.	2004-11-30	Scale: N.T.S.	Rev: 4	31-4070	1/1



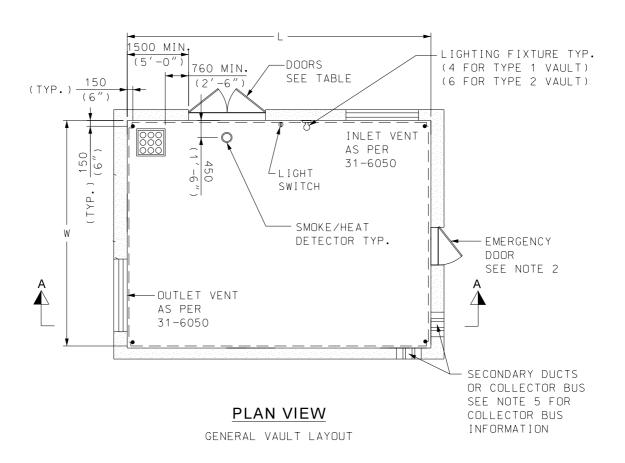

- 1) INSTALL GUARD POSTS (BOLLARDS) IF THE EQUIPMENT IS LESS THAN 1000 mm (3'-4") FROM THE CURB OR ANYWHERE TORONTO HYDRO DEEMS NECESSARY.
- 2) NUMBER OF GUARD POSTS AND LOCATIONS SHOWN ARE TYPICAL ARRANGEMENTS. ACTUAL NUMBER OF GUARD POSTS AND LOCATIONS SHALL BE DETERMINED BY TORONTO HYDRO DESIGNER OR INSPECTOR, USING THE FOLLOWING CRITERIA:
 - A) GUARD POST INSTALLATIONS SHALL ALLOW EQUIPMENT DOORS TO BE OPENED THROUGH THEIR FULL RANGE.
 - B) GUARD POSTS SHALL BE PLACED 700 mm (2'-4") OUTSIDE THE EDGE OF THE EQUIPMENT UNLESS OTHERWISE NOTED.
 - C) GUARD POST INSTALLATIONS SHALL ALLOW TORONTO HYDRO PERSONNEL UNIMPEDED ACCESS TO THE EQUIPMENT.
 - D) THE DISTANCE BETWEEN TWO GUARD POSTS SHALL BE MAX. OF 1800 mm (6'-0").
- 3) BACKFILL REMAINING EXCAVATION AND COMPACT AS PER CIVIL SPECIFICATION CV-CON-01.
- 4) FILL GUARD POSTS WITH 20 MPa CONCRETE.
- 5) PAINT GUARD POST WITH SAFETY YELLOW PAINT. FOR PROPER ADHESION OF PAINT, GUARD POST SHALL BE CLEANED AND PRIMED PRIOR TO PAINTING. A REFLECTIVE STRIP IF REQUIRED SHALL BE PLACED AT EACH POST.
- 6) ALL GUARD POSTS SHALL BE GROUNDED. REFER TO STD. 18-5000 FOR GROUNDING DETAILS. REFER TO STANDARDS 31-4020, 31-4030, 31-4050 FOR PAD-MOUNT CIVIL DETAILS.
- ⚠ 7) CONTRACTOR TO INSTALL A 300 mm (1'-0") CONSTRUCTION JOINT AROUND THE GUARD POSTS EXCEPT IN GRASSY BOULEVARDS.

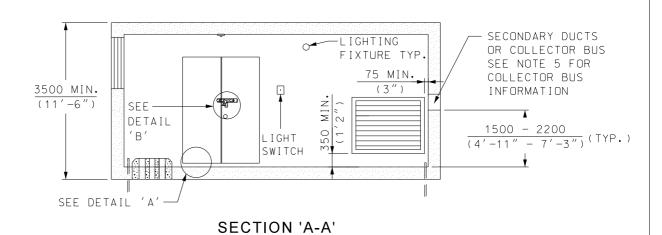

DISTRIBUTION CONSTRUCTION STANDARD Civil Construction			PAD-MOUNTS						
TORONTO	Approved By:)15-11-19		GUARD P	OSTS ((BOI	LAR	DS)	
HYDRO	Drafted By: B.W.	Designed By:	Original Issue: G.D./L.G.	2000-12-19	Scale: N.T.S.	Rev:	8	31-4080	1/3

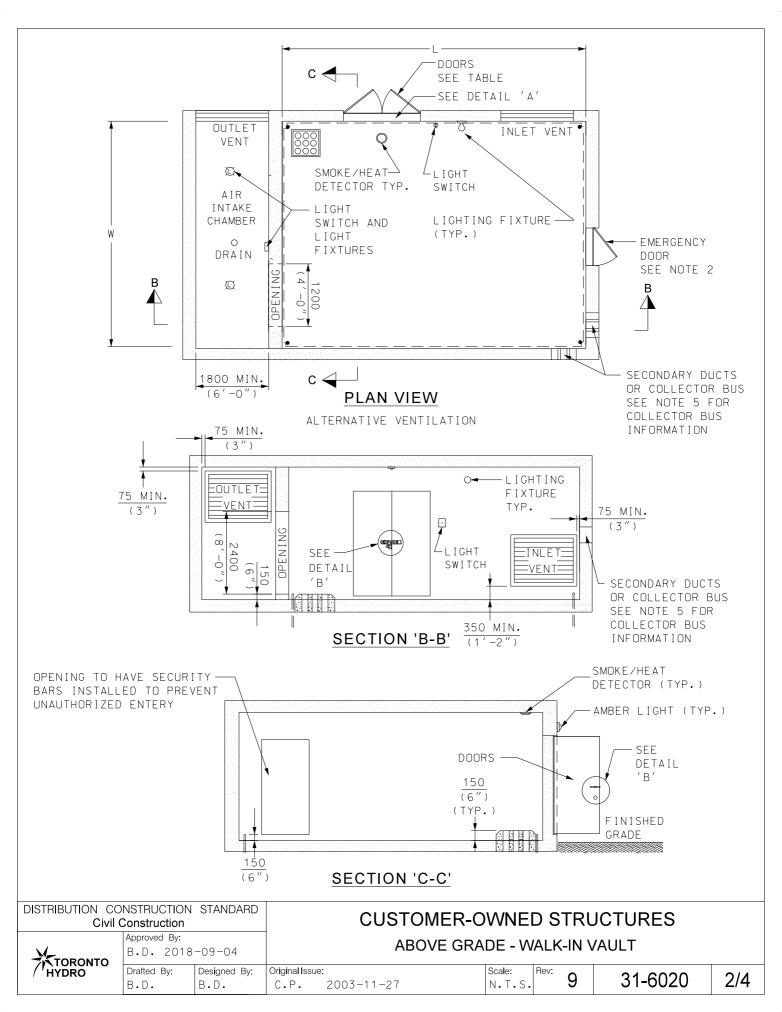


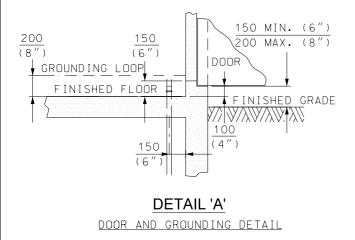

3-PHASE PAD-MOUNT

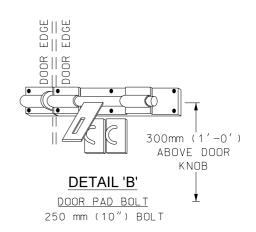
DISTRIBUTION CO	NSTRUCTION Construction	STANDARD	PAD-MOUNTS						
TORONTO	Approved By:	015-11-19		GUARD P	OSTS ((BOL	.LAR	DS)	
HYDRO	Drafted By: B.W.	Designed By:	Original Issue: G.D./L.G.	2000-12-19	Scale: N.T.S.	Rev:	8	31-4080	2/3


SWITCHGEAR PAD-MOUNT


DISTRIBUTION CO	NSTRUCTION Construction	STANDARD	PAD-MOUNTS					
Approved By: J.D. 2015-11-19				GUARE) POSTS (E	BOLLAR	DS)	
HYDRO	Drafted By: B.W.	Designed By:	Original Issue:	2000-12-19	Scale: F	Rev: 8	31-4080	3/3


- 1) ANY AND ALL OBJECTS WITHIN THE CLEARANCE ZONE AREA, ARE SUBJECT TO REMOVAL WITHOUT ANY PRIOR NOTICE SHOULD OPERATIONAL OR EMERGENCY CONDITIONS EXIST.
- 2) TORONTO HYDRO SHALL NOT BE HELD RESPONSIBLE FOR ANY COSTS ASSOCIATED WITH THE REMOVAL OR RESULTING DAMAGE TO ANY OBJECTS WITHIN THE CLEARANCE ZONE AREA. THE DEVELOPER/OWNER ASSUMES ALL RESPONSIBILITY FOR ENCROACHING WITHIN THE CLEARANCE ZONE AREA.
- 3) FINAL FINISHED GRADE WITHIN CLEARANCE ZONE SHALL NOT BE ALTERED.
- 4) IN CASES WHERE THE DESIGN REQUIRES A VALUE LESS THAN THE SPECIFIED LIMITATION, CONTACT STANDARDS AND MATERIALS FOR APPROVAL PRIOR TO IMPLEMENTATION.
- 5) REFER TO STANDARD 31-4080 GUARD POSTS (BOLLARDS) PLACEMENT FOR DETAILS.
- ⚠ 6) REFER TO STANDARD 18-5500 FOR PAD-MOUNTED EQUIPMENT GROUNDING DETAILS.


DISTRIBUTION CONSTRUCTION STANDARD Civil Construction			PAD-MOUNTS					
TORONTO	Approved By:				CLEARANCE	ZONE		
HYDRO	Drafted By:	Designed By:	Original Issue:	2019-08-26	Scale: N.T.S.	Rev: 1	31-4100	1/1



DISTRIBUTION CONSTRUCTION STANDARD **CUSTOMER-OWNED STRUCTURES Civil Construction** Approved By: ABOVE GRADE - WALK-IN VAULT B.D. 2018-09-04 TORONTO HYDRO Drafted By: Designed By: Original Issue: Scale: 31-6020 9 1/4 B.D. B.D. C.P. 2003-11-27 N.T.S

	ABOVE GRADE - WALK-IN VAULT SIZES								
TYPE	TX. RATING	L	W	DOORS	ELECTRICAL EQUIPMENT				
1	UP TO 2000 KVA	8000 (26′-3″)	6000 (19'-8")	1200×2400 HIGH (4′ X 8′)	REFER TO STANDARDS				
1 2	2500 KVA TO 4000 KVA 💁	10000 (32'-0")	8000 (26′-3″)	1200×3000 HIGH (4′ X 10′)					

<u>A</u>
_

ABOVE GRADE - WALK-IN VAULT MIN. LOADING (SUSPENDED SLAB)							
TYPE	TX. RATING	ROOM AREA	DEAD LOAD (EQUIP. W/ S.F. 1.2)	LIVE LOAD (OBC)			
1	UP TO 2000 KVA	48 m²	9,600 kg	3.6 kPa°			
2	2500 kVA TO 4000 kVA	80 m²	26,500 kg	3.6 kPa*			

FOR VAULT TYPE #1 WITH 48 m'ROOM AREA, THE MINIMUM LIVE LOAD WOULD BE 18,000 kg FOR VAULT TYPE #2 WITH 80 m'ROOM AREA, THE MINIMUM LIVE LOAD WOULD BE 30,000 kg

DISTRIBUTION CO	NSTRUCTION Construction	STANDARD	CUSTOMER-OWNED STRUCTURES						
TORONTO	Approved By: B.D. 2018	-09-04		ABOVE	GRAI	DE - W	/ALK-IN \	/AULT	
HYDRO	Drafted By: B.D.	Designed By: B.D.	Original Issu	e: 2003-11-27		Scale: N.T.S.	Rev: 9	31-6020	3/4

- 1) THIS DRAWING SHALL BE READ IN CONJUNCTION WITH THE TORONTO HYDRO REQUIREMENTS FOR THE DESIGN AND CONSTRUCTION OF CUSTOMER-OWNED STRUCTURES DOCUMENT.
- 2) EMERGENCY DOOR IS REQUIRED IN NEW TRANSFORMER VAULTS, LOCATION OF WHICH SHALL BE APPROVED BY TORONTO HYDRO REPRESENTATIVE. EMERGENCY DOOR SHALL HAVE PANIC HARDWARE INSTALLED TO ALLOW DOOR TO OPEN FROM THE INSIDE. THERE SHALL BE NO METHOD OF OPENING AN EMERGENCY DOOR FROM THE OUTSIDE.
- 3) LOCATION OF ELECTRICAL LIGHT FIXTURE CAN BE INSTALLED AS SHOWN OR AN ALTERNATE LOCATION CAN BE CHOSEN PROVIDED ADEQUATE SPACE AND CLEARANCE IS PROVIDED TO ALLOW FOR PROPER OPERATION AND MAINTENANCE OF ELECTRICAL EQUIPMENT.
- 4) DOORS, LOUVER, SECURITY BARS AND ANY METAL PRODUCT SHALL BE GROUNDED BY CONNECTING 2/0 FLEX STRANDED COPPER TO THE GROUNDING LOOP. CONNECTION SHALL BE BY USING PARALLEL GROOVE CLAMPS AND GROUNDING LUG.
- 5) FOR ADJACENT ELECTRICAL ROOMS, COLLECTOR BUSES OR BUS STUBS CAN BE INSTALLED INSTEAD OF DUCTS AT A MINIMUM HEIGHT OF 2134 mm (7'-0") ABOVE FINISHED FLOOR WITH 600 mm (1'-115%") CLEARANCE ON EITHER SIDE TO ALLOW PROPER TERMINATION OF CABLES, COLLECTOR BUS TO BE INSTALLED AS PER SECTION 13 AND ALLOW PROPER UNHINDERED OPERATION AND ACCESS OF EQUIPMENT, SEE STD. 15-1500 FOR COLLECTOR BUS DETAILS.
- ⚠6) FOR SUSPENDED SLAB DESIGN, DEFINED LOAD CAPACITY IS TO BE A MINIMUM. THE VAULT DESIGN MUST COMPLY WITH THE MOST RECENT VERSION OF THE ONTARIO BUILDING CODE (OBC) AND BE SEALED BY A PROFESSIONAL ENGINEER OF ONTARIO, INCREASED CAPACITY MAY BE REQUIRED DEPENDING ON EXTERNAL FACTORS OR JOINT USE EQUIPMENT ROOMS.
- ⚠7) ALL LISTED KVA RATINGS ARE AGGREGATED.
- ⚠8) SAFETY FACTOR (S.F.) OF 1.2 SHALL BE ASSUMED IN THE DEAD LOAD CALCULATIONS
- ⚠9) FOR SCENARIOS WITH TRANSFORMER CAPACITY GREATER THAN 4 MVA, CUSTOMER TO ATTAIN EQUIPMENT SHOP DRAWINGS AND DETERMINE THE REQUIRED LOADING OUTSIDE OF THE LISTED REQUIREMENTS.

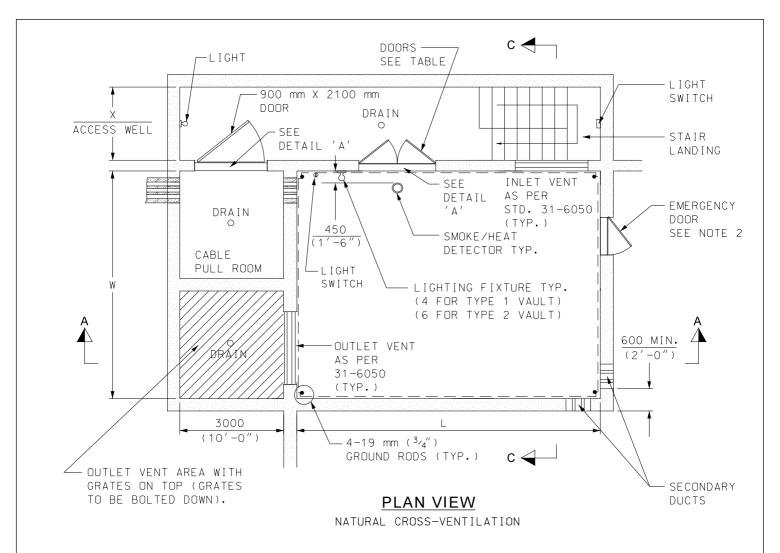
DISTRIBUTION	CONSTRUCTION	STANDARD
Ci	vil Construction	

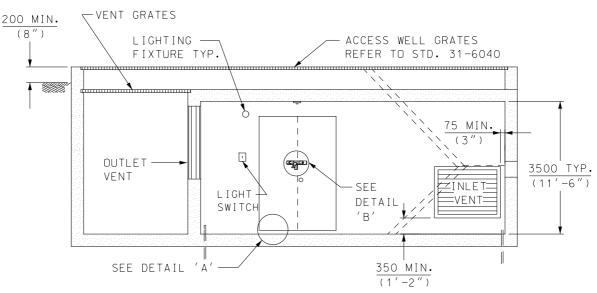
TORONTO

Approved By: B.D. 2018-09-04

Drafted By: Designed By: B.D. B.D.

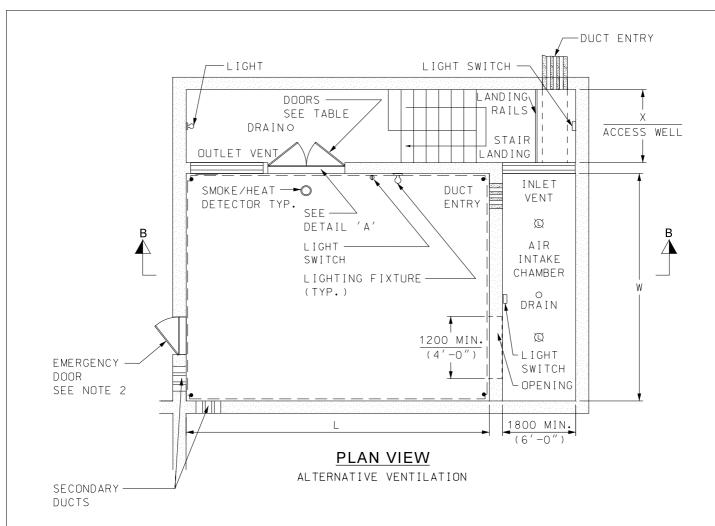
Original Issue: C.P. 2003-11-27

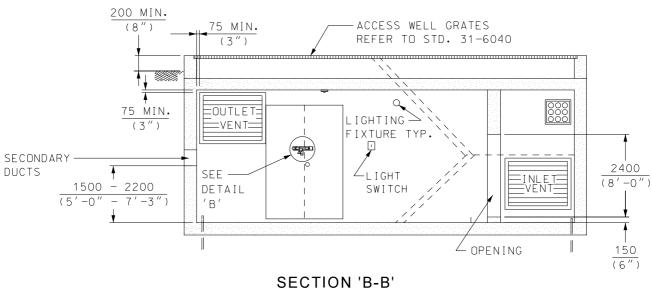

Scale: Rev:

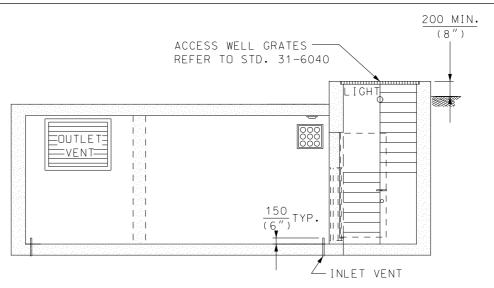

CUSTOMER-OWNED STRUCTURES

ABOVE GRADE - WALK-IN VAULT

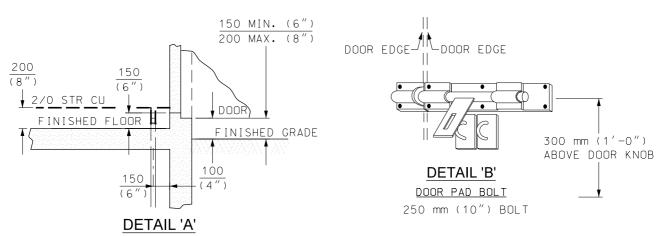
9 31-6020


4/4




DISTRIBUTION CONSTRUCTION STANDARD **CUSTOMER-OWNED STRUCTURES Civil Construction** Approved By: BELOW-GRADE WALK-IN VAULT HYDRO TORONTO Original Issue: Drafted By: Designed By: Scale: Rev: 31-6030 1/4 N.T.S. B.D. B.D. C.P. 2003-11-27

SECTION 'A-A'

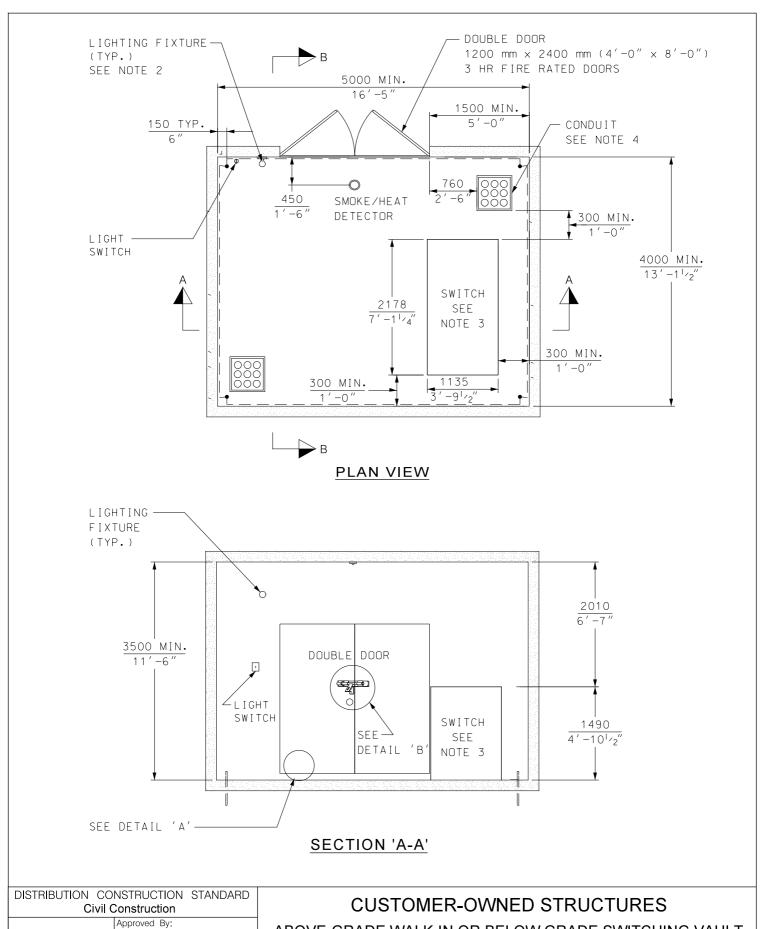


[DISTRIBUTION CC Civil (NSTRUCTION Construction	STANDARD	CUSTOMER-OWNED STRUCTURES						
Approved By:					BEL	OW-GRADE	E WA	LK-IN \	/AULT	
	HYDRO	Drafted By: B.D.	Designed By: B.D.	Original Issu	e: 2003-11-27	Scale:	.S.	11	31-6030	2/4

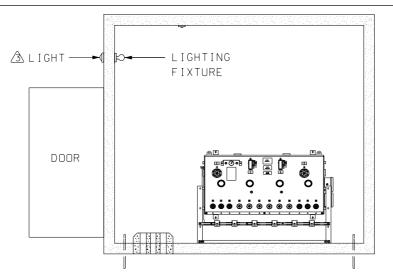
SECTION 'C-C'

DOOR AND GROUNDING DETAIL

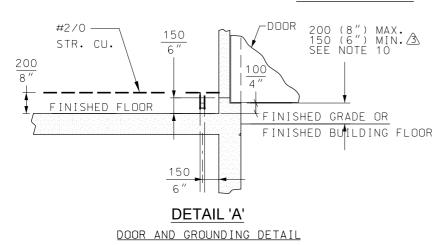
	⚠ BELOW-GRADE - WALK-IN VAULT SIZES												
TYPE	TX. RATING	L	W	Χ	DOORS 🕰	ELECTRICAL EQUIPMENT							
1	UP TO 2000 KVA	8000 (26′-3″)	6000 (19′-8″)	1900 (6′-3″)	1200×2400 HIGH (4′ X 8′)	REFER TO STANDARDS							
2	2500 KVA TO 4000 KVA	10000 (32'-0")	8000 (26′-3″)	3000 (10′-0″)	1200×3000 HIGH (4′ X 10′)	13-7030 TO 13-7500							

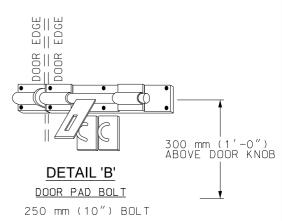

⚠ BELOW-GRADE - WALK-IN VAULT MIN. LOADING (SUSPENDED SLAB)									
TYPE	TX. RATING	ROOM AREA	DEAD LOAD (EQUIP. W/ S.F. 1.2)	LIVE LOAD (OBC)					
1	UP TO 2000 KVA	48 m²	9,600 kg	3.6 kPa"					
2	2500 kVA TO 4000 kVA	80 m²	26,500 kg	3.6 kPa*					

FOR VAULT TYPE #1 WITH 48 m'ROOM AREA, THE MINIMUM LIVE LOAD WOULD BE 18,000 kg FOR VAULT TYPE #2 WITH 80 m'ROOM AREA, THE MINIMUM LIVE LOAD WOULD BE 30,000 kg


DISTRIBUTION CO Civil (NSTRUCTION Construction	STANDARD		CUSTOMER-O	WNE	D STRU	JCTURES		
TORONTO	Approved By:		BELOW-GRADE WALK-IN VAULT						
HYDRO	Drafted By: B.D.	Designed By: B.D.	Original Issu	e: 2003-11-27	Scale: N.T.S.	Rev: 11	31-6030	3/4	

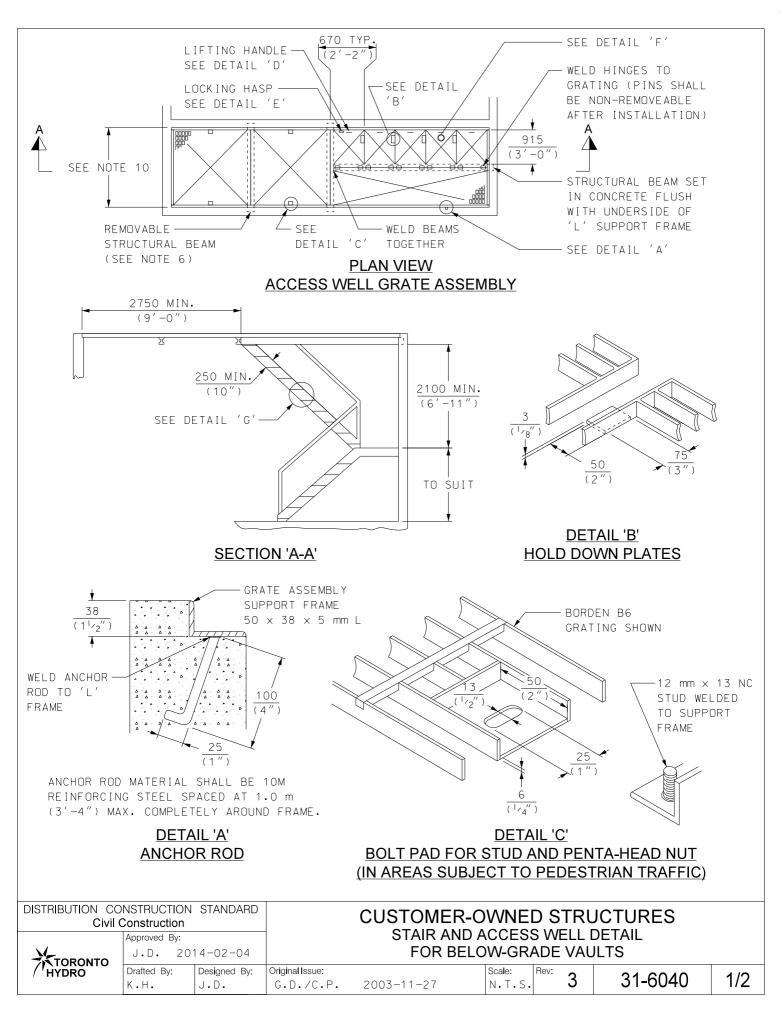
- 1) THIS DRAWING SHALL BE READ IN CONJUNCTION WITH THE TORONTO HYDRO REQUIREMENTS FOR THE DESIGN AND CONSTRUCTION OF CUSTOMER-OWNED STRUCTURES DOCUMENT.
- 2) EMERGENCY DOOR IS REQUIRED IN NEW TRANSFORMER VAULTS, LOCATION OF WHICH SHALL BE APPROVED BY TORONTO HYDRO REPRESENTATIVE. EMERGENCY DOOR SHALL HAVE PANIC HARDWARE INSTALLED TO ALLOW DOOR TO OPEN FROM THE INSIDE. THERE SHALL BE NO METHOD OF OPENING AN EMERGENCY DOOR FROM THE OUTSIDE.
- 3) EMERGENCY DOOR SHALL HAVE PANIC HARDWARE INSTALLED TO ALLOW DOOR TO OPEN FROM THE INSIDE. THERE SHALL BE NO METHOD OF OPENING AN EMERGENCY DOOR FROM THE OUTSIDE.
- 4) LOCATION OF ELECTRICAL LIGHT FIXTURE CAN BE INSTALLED AS SHOWN OR AN ALTERNATE LOCATION CAN BE CHOSEN PROVIDED ADEQUATE SPACE AND CLEARANCE IS PROVIDED TO ALLOW FOR PROPER OPERATION AND MAINTENANCE OF ELECTRICAL EQUIPMENT.
- 5) DOORS, LOUVER, SECURITY BARS AND ANY METAL PRODUCT SHALL BE GROUNDED BY CONNECTING 2/0 FLEX STRANDED COPPER TO THE GROUNDING LOOP. CONNECTION SHALL BE BY USING PARALLEL GROOVE CLAMPS AND GROUNDING LUG.
- 6) FOR SUSPENDED SLAB DESIGN, DEFINED LOAD CAPACITY IS TO BE A MINIMUM. THE VAULT DESIGN MUST COMPLY WITH THE MOST RECENT VERSION OF THE ONTARIO BUILDING CODE (OBC) AND BE SEALED BY A PROFESSIONAL ENGINEER OF ONTARIO, INCREASED CAPACITY MAY BE REQUIRED DEPENDING ON EXTERNAL FACTORS OR JOINT USE EQUIPMENT ROOMS.
- 7) ALL LISTED KVA RATINGS ARE AGGREGATED.
- 8) SAFETY FACTOR (S.F.) OF 1.2 SHALL BE ASSUMED IN THE DEAD LOAD CALCULATIONS
- 9) FOR SCENARIOS WITH TRANSFORMER CAPACITY GREATER THAN 4 MVA, CUSTOMER TO ATTAIN EQUIPMENT SHOP DRAWINGS AND DETERMINE THE REQUIRED LOADING OUTSIDE OF THE LISTED REQUIREMENTS.

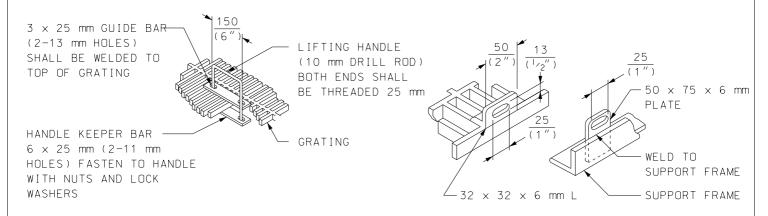

	NSTRUCTION Construction	STANDARD	CUSTOMER-OWNED STRUCTURES				
TORONTO	Approved By:		BELO	OW-GRADE WALK-IN VAULT			
HYDRO	Drafted By: B • D •	Designed By: B.D.	Original Issue: C.P. 2003-11-27	Scale: Rev: 11 31-6030 4/	4		



ABOVE-GRADE WALK-IN OR BELOW GRADE SWITCHING VAULT B.D. 2020-09-25 TORONTO HYDRO Drafted By: Designed By: Original Issue: Scale: Rev: 3 31-6035 1/2 N.T.S B.D. B.D. J.D. 2013-02-11

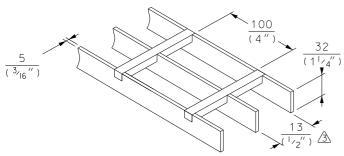
SECTION 'B-B'

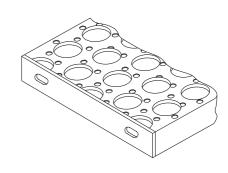

NOTES:


- 1) THIS DRAWING SHALL BE READ IN CONJUNCTION WITH THE TORONTO HYDRO REQUIREMENTS FOR THE DESIGN AND CONSTRUCTION OF CUSTOMER-OWNED STRUCTURES DOCUMENT.
- 2) LIGHTING SHALL BE INSTALLED AS PER CUSTOMER-OWNED STRUCTURES DOCUMENT, LIGHTING SHALL BE LOCATED SO THAT THERE IS ADEQUATE SPACE FOR THE RELAMPING OR MAINTENANCE.
- 3) LOCATION OF ELECTRICAL EQUIPMENT CAN BE INSTALLED AS SHOWN OR AN ALTERNATE LOCATION CAN BE CHOSEN PROVIDED ADEQUATE SPACE AND CLEARANCE IS PROVIDED TO ALLOW FOR PROPER OPERATION AND MAINTENANCE OF ELECTRICAL EQUIPMENT, REFER TO STD. 13-7840 FOR SWITCH DIMENSIONS.
- 4) LOCATION OF INCOMING AND OUTGOING CONDUIT ONLY SHOWN FOR GUIDELINE PURPOSES.
- 5) SWITCH VAULTS DO NOT REQUIRE VENTILATION.

DISTRIBUTION CONSTRUCTION STANDARD

- 6) REFER TO STD. 31-6040 FOR BELOW GRADE VAULT STAIR AND ACCESS WELL DETAILS.
- 7) IF REQUIRED, AN EMERGENCY DOOR CAN BE INSTALLED WITH APPROVAL FROM TORONTO HYDRO.
- 8) EMERGENCY DOOR SHALL HAVE PANIC HARDWARE INSTALLED TO ALLOW DOOR TO OPEN FROM THE INSIDE. THERE SHALL BE NO METHOD OF OPENING AN EMERGENCY DOOR FROM THE OUTSIDE.
- 9) DOORS, LOUVER, SECURITY BARS AND ANY METAL PRODUCT SHALL BE GROUNDED BY CONNECTING #2/0 FLEX STRANDED COPPER TO THE GROUNDING LOOP, CONNECTION SHALL BE BY USING PARALLEL GROOVE CLAMPS AND GROUNDING LUG.
- ⚠ 10)HEIGHT OF CURB AT EXTERIOR THRESHOLD OF DOOR SHALL BE MINIMUM 150 mm (6") AND MAXIMUM 200 mm (8") WHEN FACING EXTERIOR FINISHED GRADE. IF VAULT EXIT IS WITHIN BUILDING, MINIMUM 100 mm (4") CURB SHALL BE MAINTAINED.

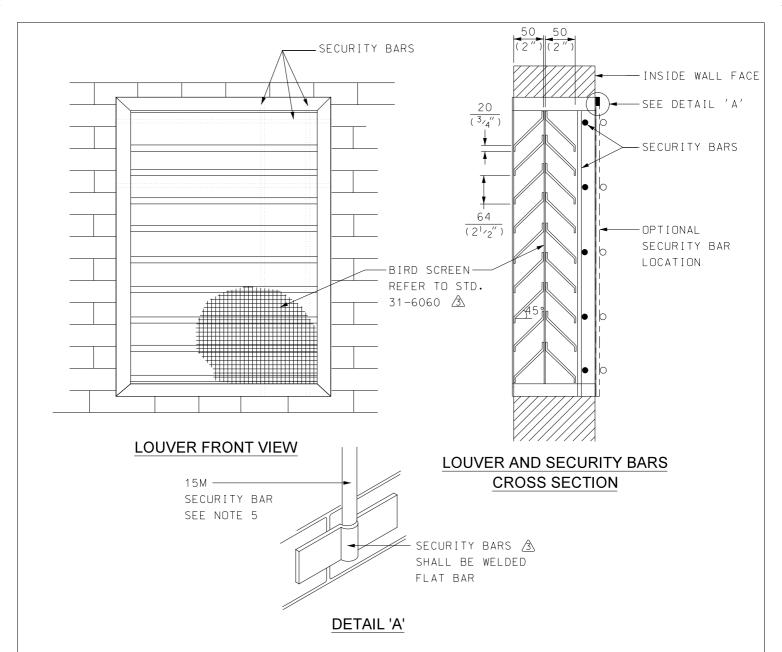

Civil	Construction	STAINDARD	CUSTOMER-OWNED STRUCTURES					
TORONTO	Approved By: B.D. 2020-09-25		ABOVE-GRADE WALK-IN OR BELOW GRADE SWITCHING VAULT					
HYDRO	Drafted By: B • D •	Designed By: B.D.	Original Issue: J.D. 2013-02-11	Scale: Rev: 3	31-6035	2/2		



<u>DETAIL 'D'</u> GRATE LIFTING HANDLE

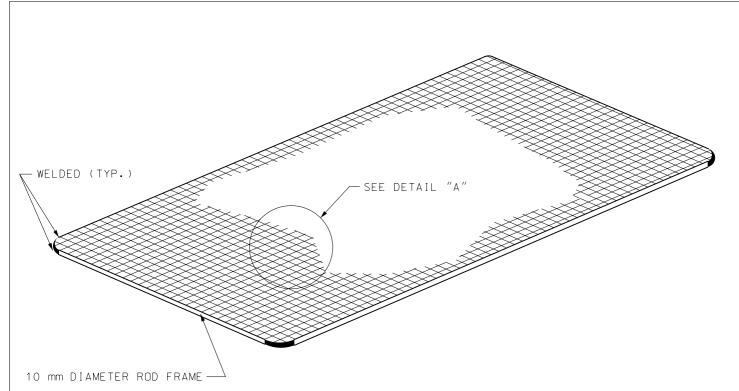
WEIGHT 9 lbs/SQ. FT. MAX. ALLOWABLE SPAN 5'-6" (SEE NOTE 3)

<u>DETAIL 'F'</u> TYPICAL GRATING

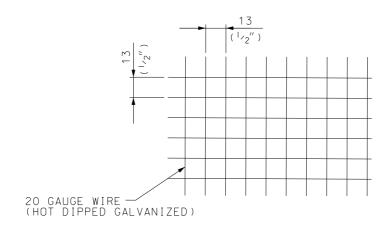

<u>DETAIL 'G'</u> <u>SAFETY GRIP STAIR TREAD</u>

NOTES:

- 1) ALL METAL COMPONENTS SHALL BE HOT DIPPED GALVANIZED AS PER CSA G-164. CLEANED, PRIMED AND PAINTED AFTER WELDING.
- 2) DETAILS SHOWN ARE INTENDED TO BE TYPICAL ARRANGEMENTS ONLY. SHOP DRAWINGS SHALL BE ACCEPTED BY TORONTO HYDRO BEFORE CONSTRUCTION.
- 3) ACCESS WELL SHALL BE COMPLETE WITH STANDARD GRATING TYPE 'B6' AS MANUFACTURED BY BORDEN METAL PRODUCTS AS APPROVED EQUIVALENT.
- 4) LOCKING HASPS FOR GRATING SHALL BE SUPPLIED BY OWNER AS PER DIAGRAM, LOCKS SHALL BE SUPPLIED BY TORONTO HYDRO.
- 5) PENTA-HEAD NUTS ARE REQUIRED FOR GRATING.
- 6) BEAM SHALL BE SEATED IN A SUITABLE SADDLE (METAL OR CONCRETE) WITH NO FASTENING DEVICES (BOLTS).
- 7) STAIRS, HANDRAIL AND GUARDS SHALL BE CONSTRUCTED TO ONTARIO BUILDING CODE REQUIREMENTS FOR AN EXIT STAIR AND SHALL BE INSTALLED IN A SECURE MANNER.
- 8) STAIRS, HANDRAIL AND GUARDS SHALL BE OF ALL METAL CONSTRUCTION WITH WELDED JOINTS AND SHALL BE HOT DIPPED GALVANIZED AS PER CSA SPEC. G-164.
- 9) STAIR TREADS AND LANDING SHALL BE AMICO-ISG SAFETY GRIP GRATING OR APPROVED EQUIVALENT.
- 10) REFER TO STD, 31-6020 AND 31-6030 FOR LOCATION OF ACCESS WELL, WIDTH OF GRATING SHALL SUIT THE WIDTH OF ACCESS WELL.
- 11) ALL GRATINGS SHALL BE BOLTED DOWN.


DICTRIBUTION CONCEDUCTION CEANDARD

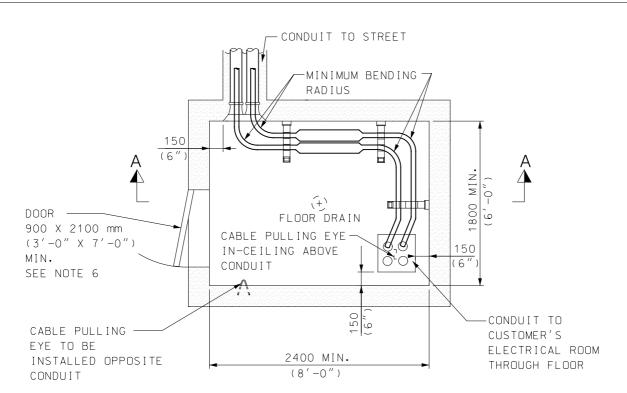
Civil (Construction	STANDARD		CUSTOMER-OWNED STRUCTURES						
Approved By:]	STAIR AND ACCESS WELL DETAIL							
TORONTO	J.D. 20	014-02-04	FOR BELOW-GRADE VAULTS							
/ HYDRO	Drafted By:	Designed By:	Original Issue:			Rev: 2	31-6040	2/2		
	K.H.	J.D.	G.D./C.P.	2003-11-27	N.T.S.	٦	31-0040	212		



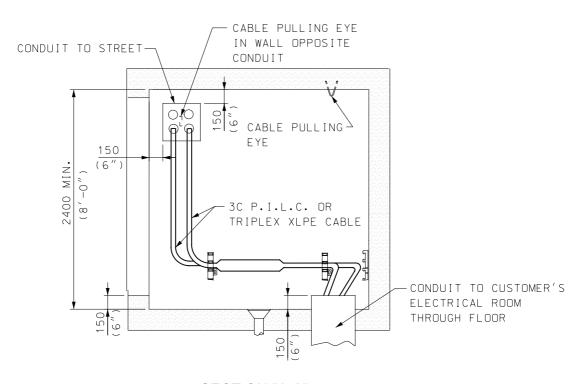
- 1) VAULTS SHALL BE PROVIDED WITH A NATURAL CROSS VENTILATION SYSTEM TO PREVENT THE AMBIENT TEMPERATURE IN THE VAULT FROM EXCEEDING 40 DEG. CELSIUS.
- 2) NET AREA OF VENTILATION OPENINGS (INLET AND OUTLET) SHALL NOT BE LESS THAN 20 cm² (3 in²) PER kVA.
- 3) VENT OPENINGS SHALL HAVE 64 mm ($2^{1}/2^{"}$) SPACED GABLED DOUBLE LOUVER VENT. CONSTRUCTION SHALL BE OF MINIMUM 16 GAUGE STEEL USING 13 mm ($^{1}/2^{"}$) SQUARE MESH BIRD SCREEN.
- 4) SHOP DRAWINGS SHALL BE REVIEWED AND ACCEPTED BY TORONTO HYDRO BEFORE FABRICATION.
- 5) 15M SECURITY BARS SHALL BE MOUNTED ON WALL, SPACED AT 200 mm (8") CENTERS WITH WELDS AT INTERSECTING POINTS. AS AN ALTERNATIVE, SECURITY BARS CAN BE LAGGED INTO TRANSFORMER VAULT WALL.
- 6) ALL STEEL SHALL BE OF METAL CONSTRUCTION WITH WELDED JOINTS.
- 7) ALL STEEL SHALL BE HOT DIPPED GALVANIZED AFTER FABRICATION AS PER CSA G-164.
- 8) LOUVER, SECURITY BARS SHALL BE GROUNDED BY CONNECTING #2/O FLEX STRANDED COPPER TO THE GROUNDING LOOP, CONNECTION TO THE METAL PRODUCTS SHALL BE BY USING PARALLEL GROOVE CLAMPS AND GROUNDING LUG.

DISTRIBUTION CC Civil (NSTRUCTION Construction	STANDARD		CUSTOMER-OWNED STRUCTURES						
TORONTO	Approved By: J.D. 2014-02-04			LOUVER DETAILS FOR VENT OPENINGS						
HYDRO	Drafted By: K.H.	Designed By:	Original Issue	e: 2003-11-27	Scale:	Rev: 3	31-6050	1/1		

ISOMETRIC VIEW

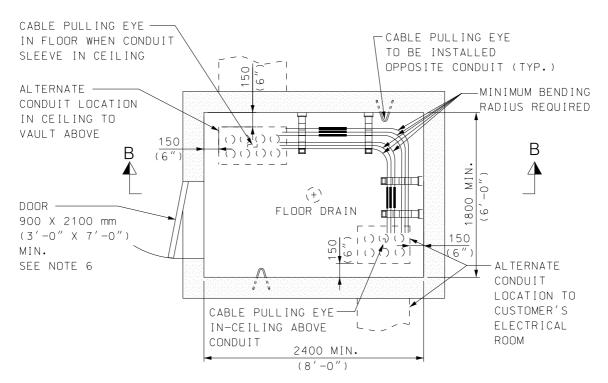

DETAIL "A"

13 mm ($\frac{1}{2}$ ") WELDED WIRE MESH

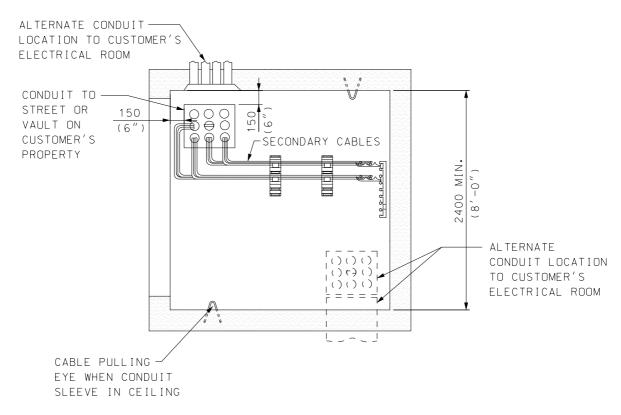

NOTES: 2

- 1) BIRD SCREEN TO BE OF METAL CONSTRUCTION WITH WELDED JOINTS.
- 2) BIRD SCREEN AND ALL MOUNTING TO BE HOT DIPPED GALVANIZED AFTER FABRICATION AS PER CSA G-164.
- 3) SHOP DRAWINGS MUST BE REVIEWED AND ACCEPTED BY TORONTO HYDRO BEFORE FABRICATION.

DISTRIBUTION CONSTRUCTION STANDARD **CUSTOMER-OWNED STRUCTURES** Civil Construction Approved By: **BIRD SCREEN DETAILS** J.D. 2013-02-12 TORONTO HYDRO Drafted By: Designed By: Original Issue: Scale: 31-6060 1/1 D.L. J.D. C.P. 2003-11-27 N.T.S.



PLAN VIEW ROOM FOR HIGH-VOLTAGE CABLES



SECTION "A-A"

	DISTRIBUTION CONSTRUCTION STANDARD Civil Construction			CUSTOMER-OWNED STRUCTURES						
TORONTO	Approved By: J.D. 2013-02-11		TYPICAL	CABLE PULL ROOMS TYPICAL INSTALLATION OF HIGH AND LOW VOLTAGE CABLES						
HYDRO	Drafted By:	Designed By:	Original Issue: G.D./C.P.	2004-07-30	Scale: N.T.S.	Rev: 3	31-6070	1/3		

PLAN VIEW ROOM FOR LOW-VOLTAGE CABLES

SECTION "B-B"

DISTRIBUTION CO	NSTRUCTION Construction	STANDARD		CUSTOMER-OWNED STRUCTURES CABLE PULL ROOMS					
TORONTO	Approved By: J.D. 201	3-02-11	TYPICAL	CABLE INSTALLATION OF			-	BLES	
HYDRO	Drafted By:	Designed By:	Original Issue:	2004-07-30	Scale: N.T.S.	Rev: 3	31-6070	2/3	

- 1) WHEN HIGH VOLTAGE PRIMARY CABLES OR LOW VOLTAGE SECONDARY CABLES ARE ROUTED THROUGH THE CABLE PULL ROOM, THE FOLLOWING POINTS ARE TO BE CONSIDERED IN DETERMINING THE CONSTRUCTION REQUIREMENTS AND GENERAL LAYOUT:
 - A) IN ALL CASES, IT SHALL BE POSSIBLE TO MAKE CABLE JOINTS IN THE ROOM.
 - B) JOINTS IN CABLE SHALL BE HORIZONTAL.
 - C) THE WALL ON WHICH THE CABLE JOINT IS TO BE RACKED SHALL BE LONG ENOUGH TO ACCOMMODATE THE JOINT AND TWO CABLE BENDS. THE CABLE JOINT MUST BE AT LEAST 300 mm (1'-0") FROM THE FLOOR.
- 2) THE WALLS OF THE ROOM SHALL BE AT LEAST 2400 mm (8'-0") LONG AND 1800 mm (6'-0") WIDE, AND THE MINIMUM HEADROOM SHALL BE 2400 mm (8'-0"), LARGER DIMENSIONS ARE REQUIRED WHEN:

 A) STEPS, RAILINGS, COLUMNS ARE LOCATED IN THE "CLEAR" WORKING AREA.
 - B) MORE THAN 2 CIRCUITS ARE INSTALLED.
 - C) CONDUITS ARE LOCATED SUCH THAT THE CABLES SHALL ENCIRCLE THE PULL ROOM, HEADROOM DIMENSIONS TO INCREASE IN SUCH CASES.
- 3) CABLE PULLING EYES ARE TO BE INSTALLED AND LOCATED AS PER STD. 31-8210.
- 4) THE CONDUIT ENTRANCES SHALL BE LOCATED NEAR THE CORNERS OF THE ROOM AND BE AS FAR APART AS POSSIBLE AND SHALL BE OFFSET FROM EACH OTHER, ALSO, THE DUCTS THAT GO TO THE STREET MUST SLOPE AWAY FROM THE PULL ROOM.
- 5) LIGHTING AND DRAINAGE MUST BE PROVIDED BY THE CUSTOMER. LIGHT TO BE LOCATED IN THE CENTER OF ROOM.
- 6) PULL ROOM TO BE EQUIPPED WITH A DOOR AND FRAME HAVING A FIRE RATING OF 1.5 HOURS.
- 7) WHERE POSSIBLE, THE DOORWAY SHALL BE LOCATED OPPOSITE A DUCT FACE AND POSITIONED SO THAT IT DOES NOT INTERFERE WITH JOINTING OR CABLE INSTALLATION.
- 8) PADLOCK HASP TO BE PROVIDED FOR DOOR (OR PROVISION FOR TORONTO HYDRO CYLINDER LOCK 29 mm $(1'-\frac{1}{4}'')$ DIAMETER CYLINDER).
- 9) NO FOREIGN EQUIPMENT OR PIPES ARE ALLOWED IN THE PULL ROOM.
- 10) CABLE RACKS AND ARMS WILL BE SUPPLIED AND INSTALLED BY TORONTO HYDRO AND CHARGED TO THE CUSTOMER.
- 11) 24 HR. ACCESS IS REQUIRED.
- 12) THE ABOVE REQUIREMENTS ARE TO BE SHOWN ON THE CUSTOMER'S DRAWINGS FOR TORONTO HYDRO'S REVIEW AND ACCEPTANCE.

DISTRIBUTION	CONSTRUCTION	STANDARD
С	ivil Construction	

D.L.

TORONTO

Approved By:

J.D. 2013-02-11

Drafted By: Designed By:

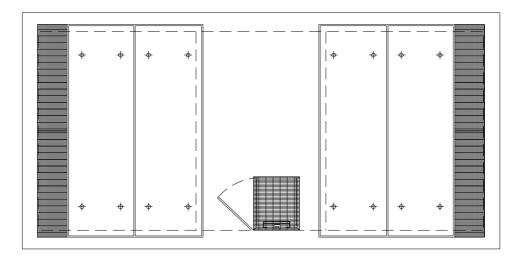
J.D.

-

Original Issue:

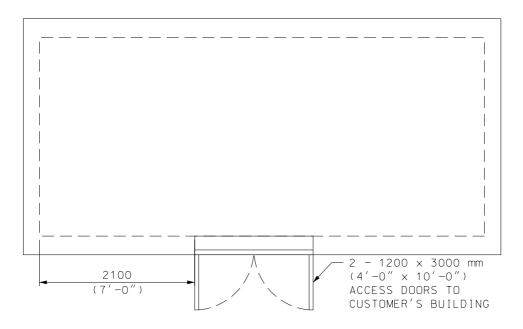
G.D./C.P.

CABLE PULL ROOMS TYPICAL INSTALLATION OF HIGH AND LOW VOLTAGE CABLES


2004-07-30

Scale: Rev:

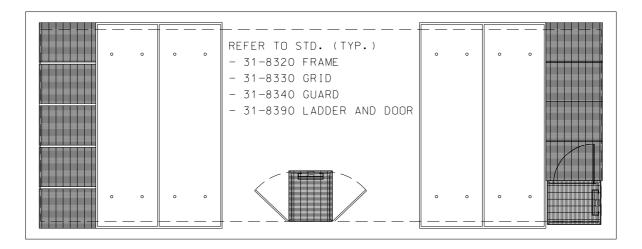
CUSTOMER-OWNED STRUCTURES


31-6070

3/3

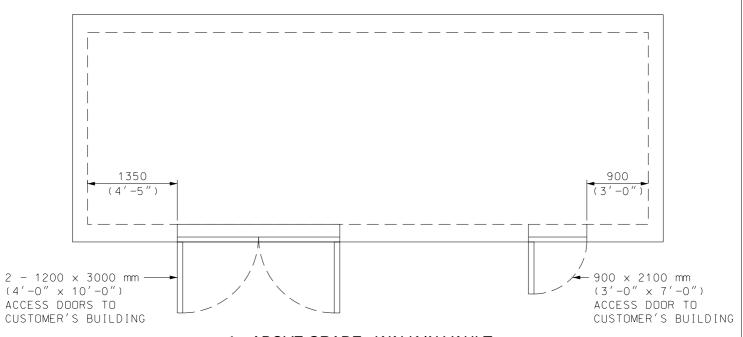
⚠ BELOW GRADE - TOP ENTRY

13-2010 - 4.16 kV (MAX. 3 - 167 kVA TRANSFORMERS) ELECTRICAL EQUIPMENT LAYOUT
13-4020 - 13.8 kV COMPACT RADIAL (MAX. 1000 kVA TRANSFORMER) ELECTRICAL EQUIPMENT LAYOUT
13-4040 - 13.8 kV COMPACT LOOP (MAX. 1000 kVA TRANSFORMER) ELECTRICAL EQUIPMENT LAYOUT
31-5110 - CIVIL STRUCTURE (PROPOSED) - 3000 x 6700 x 3660 mm (10'-0" x 22'-0" x 12'-0")
31-5170 - CIVIL STRUCTURE (EXISTING) - 2290 x 6400 x 3660 mm (7'-6" x 21'-0" x 12'-0")



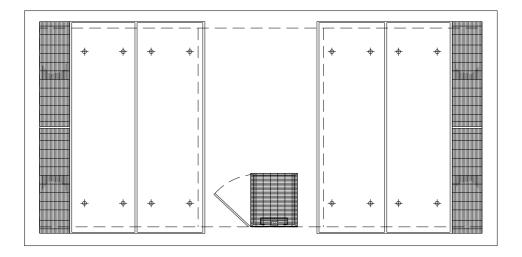
ABOVE GRADE - WALK-IN

13-2010 - 4.16 kV (MAX. 3 - 167 kVA TRANSFORMERS) ELECTRICAL EQUIPMENT LAYOUT 13-4040 - 13.8 kV COMPACT LOOP (MAX. 2000 kVA TRANSFORMER) ELECTRICAL EQUIPMENT LAYOUT CIVIL STRUCTURE - 3000 \times 7300 \times 3660 mm (10'-0" \times 24'-0" \times 12'-0")

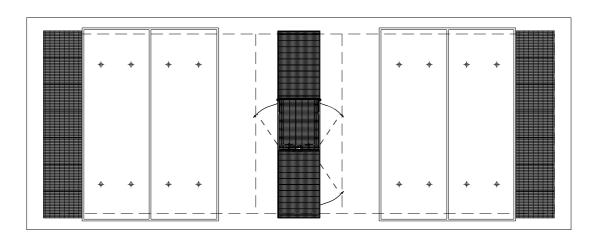

DISTRIBUTION CONSTRUCTION STANDARD

Civil	Construction	STAINDARD	CUSTOMER-OWNED STRUCTURES A							
TORONTO	Approved By:)14-02-04	4.16 kV - 13.8 kV TRANSFORMER VAULTS							
HYDRO	Drafted By:	Designed By:	Original Issue: C.P./G.D	2003-11-27	Scale: Rev: 4	31-6080	1/3			

△ BELOW GRADE - TOP ENTRY


13-4010 - 13.8 kV RADIAL (MAX. 2500 kVA TRANSFORMER) ELECTRICAL EQUIPMENT LAYOUT CIVIL STRUCTURE - $3000 \times 8530 \times 3660$ mm ($10'-0'' \times 28'-0'' \times 12'-0''$)

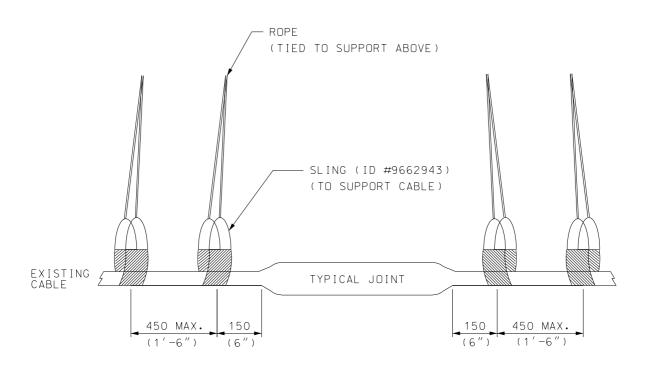
ABOVE GRADE - WALK-IN VAULT


13-4010 - 13.8 kV RADIAL (MAX. 2500 kVA TRANSFORMER) ELECTRICAL EQUIPMENT LAYOUT 13-5010 - 13.8 kV NETWORK (MAX. 2000 kVA TRANSFORMERS) CIVIL STRUCTURE - 3000 \times 8530 \times 3660 mm (10'-0" \times 28'-0" \times 12'-0")

DISTRIBUTION CO	NSTRUCTION Construction	STANDARD		CUSTOMER-C	DWNED STR	UCTURES	4
TORONTO	Approved By: J.D. 20	14-02-04		4.16 kV - 13.8 kV	/ TRANSFORME	ER VAULTS	
HYDRO	Drafted By: K.H.	Designed By:	Original Issue: C.P./G.D	2003-11-27	Scale: Rev: 4	31-6080	2/3

⚠ BELOW GRADE - TOP ENTRY

13-5010 - 13.8 kV NETWORK (MAX. 2000 kVA TRANSFORMERS) ELECTRICAL EQUIPMENT LAYOUT 31-5180 - MAX. 750 kVA TRANSFORMERS - 2290 \times 6700 \times 3660 mm (7'-6" \times 22'-0" \times 12'-0")


⚠ BELOW GRADE - TOP ENTRY

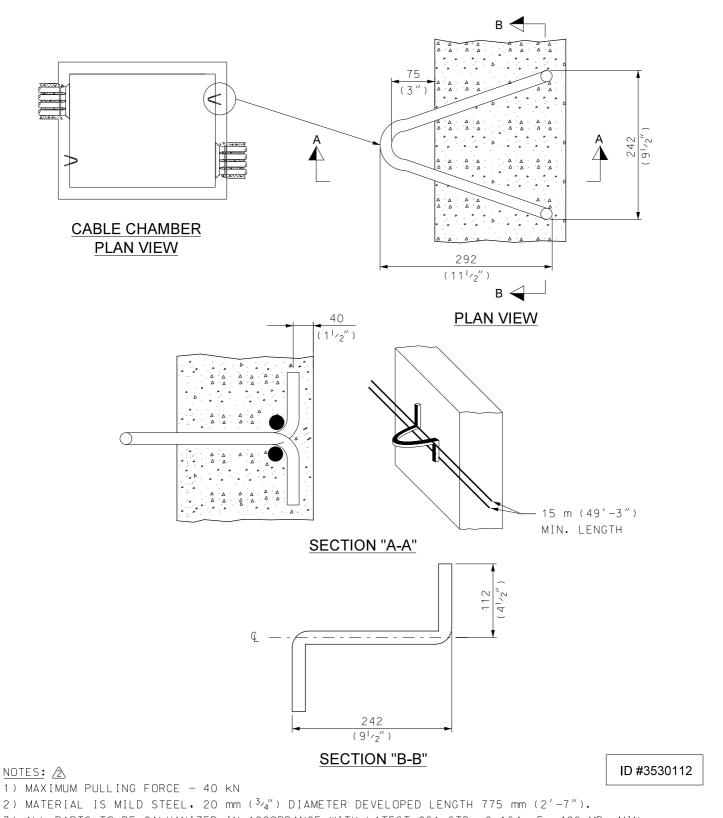
13-5010 - 13.8 kV NETWORK (MAX. 2000 kVA TRANSFORMERS) ELECTRICAL EQUIPMENT LAYOUT 31-5130 - MAX. 2000 kVA TRANSFORMERS - 3000 \times 8530 \times 3660 mm (10'-0" \times 28'-0" \times 12'-0")

NOTE:

1) THIS DRAWING SHALL BE READ IN CONJUNCTION WITH STD. 31-6000 AND STD. 31-6010.

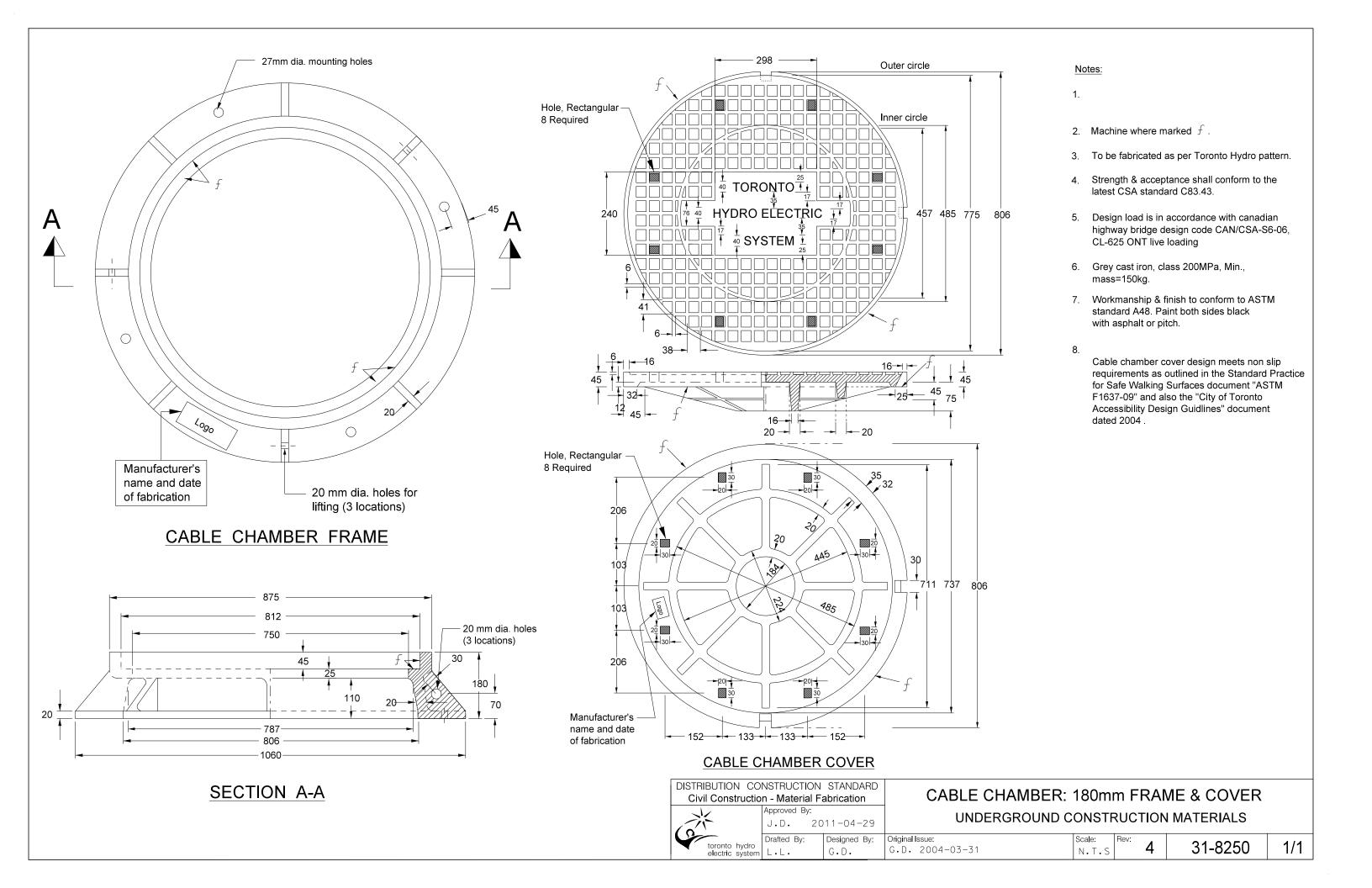
Civil (Construction	STANDARD		CUSTOMER-O	WNE	D STRU	JCTURES	4	
TORONTO	Approved By:)14-02-04		4.16 kV - 13.8 kV TRANSFORMER VAULTS					
HYDRO	Drafted By: K.H.	Designed By:	Original Issue: C.P./G.D	2003-11-27	Scale: N.T.S.	Rev: 4	31-6080	3/3	

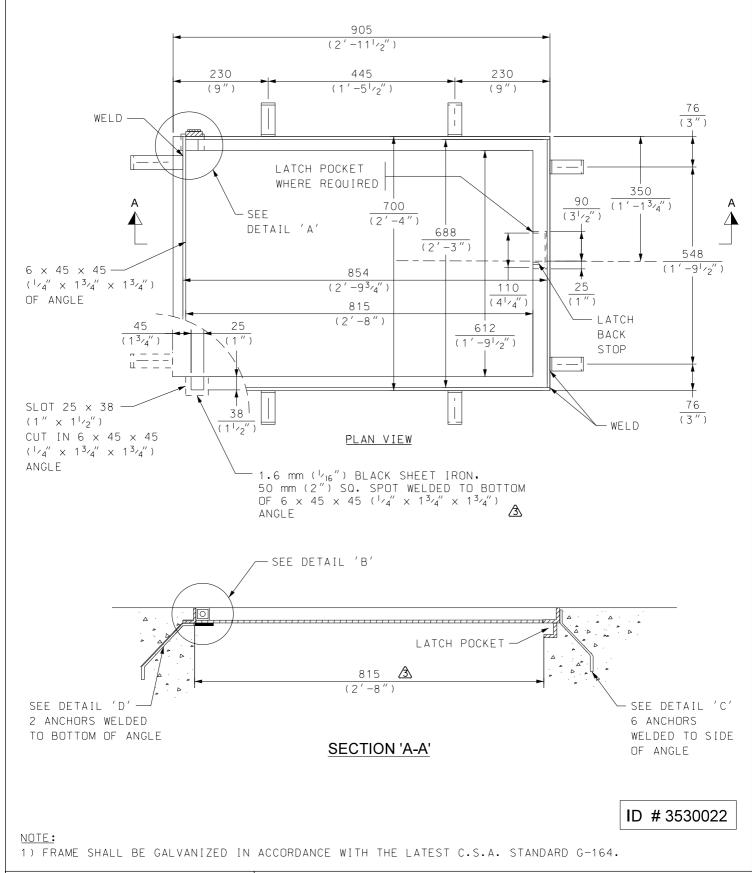
			ВОІ	M LEGEND		
Α	CABLE	SLING	(TO	SUPPORT	PRIMARY	CABLE)

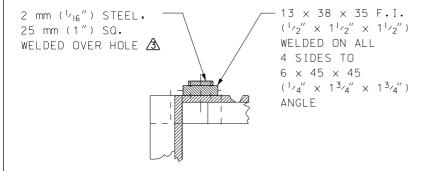

				BILL	OF	MATERIALS	S FOR	31-	-7400				
ITEM NO.	1				DE	ESCRIPTION					ITEM I.D.	QTY A	
1	CABLE	SL ING	6 "	X 18	." R	EINFORCED	WITH	1 "	NYLON	STRAP	9662943	4	*

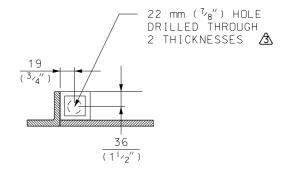
^{* 4} SLING SUPPORT PER PRIMARY CABLE

NOTES: ⚠

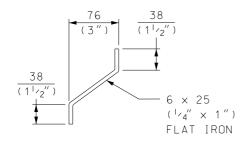

- 1) TEMPORARY CABLE SUPPORT SHALL BE PROVIDED UNTIL PERMANENT SUPPORT IS INSTALLED IN REBUILD STRUCTURES.
- 2) SUPPORT CAN BE USED ON ALL PRIMARY 4.16, 13.8 AND 27.6 kV CABLES.

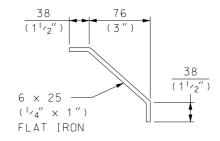

	NSTRUCTION Construction	STANDARD	TEM	PORARY SUPPO	ORT FOR F	PRII	MARY CABLE	ES
TORONTO	Approved By:	016-06-02		IN REBU	ILD STRUCT	JRE	ES	
HYDRO	Drafted By: M.S.	Designed By:	Original Issue:	2013-05-31	Scale: Rev: 1		31-7400	1/1


- 3) ALL PARTS TO BE GALVANIZED IN ACCORDANCE WITH LATEST CSA STD. G-164, Fu=400 MPa MIN., Fy=250 MPa MIN.


DISTRIBUTION CO	NSTRUCTION Construction	STANDARD		MATERIAL FABRICATION					
TORONTO	Approved By: J.D. 2012-11-05			CABLE PULLING LOOP FOR POURED & PRECAST CONCRETE WALLS					
HYDRO	Drafted By:	Designed By:	Original Issu	e: 2000-12-20	Scale: N.T.S.	Rev:	2	31-8210	1/1

DISTRIBUTION CONSTRUCTION STANDARD LADDERWAY GRID FRAME **Civil Construction** Approved By: FOR TRANSFORMER VAULT J.D. 2015-09-21 TORONTO Drafted By: Original Issue: HYDRO Designed By: Scale: 31-8320 1/2 Κ.Κ. J.D. G.D./L.G. 2002-11-15 N.T.S

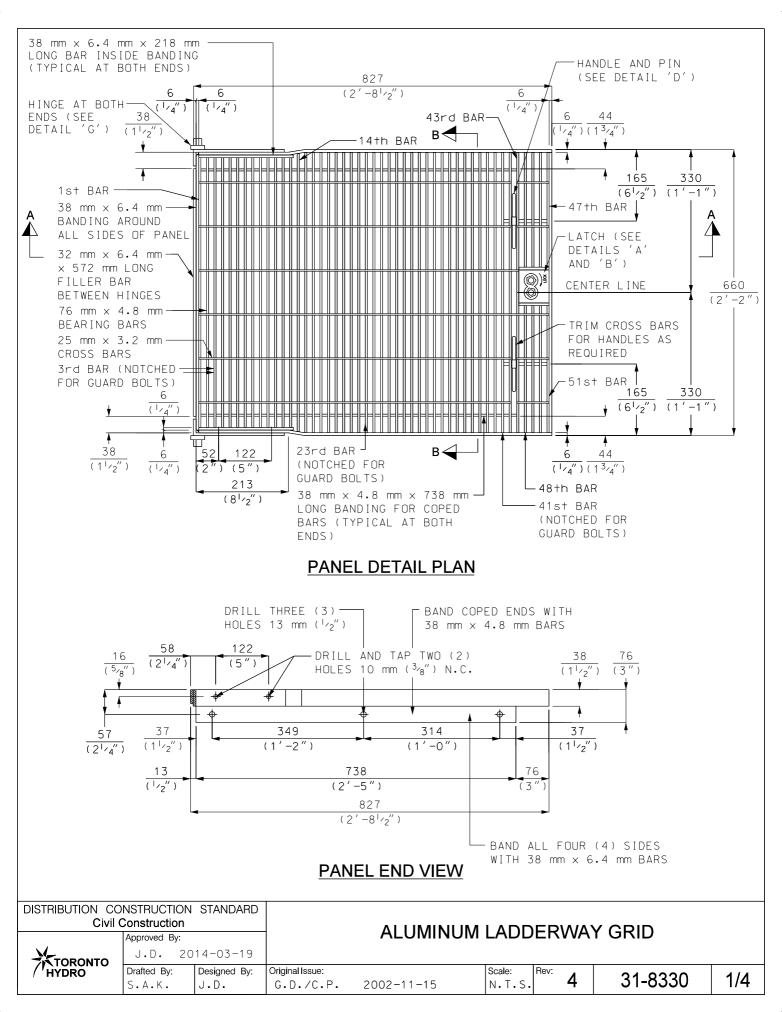


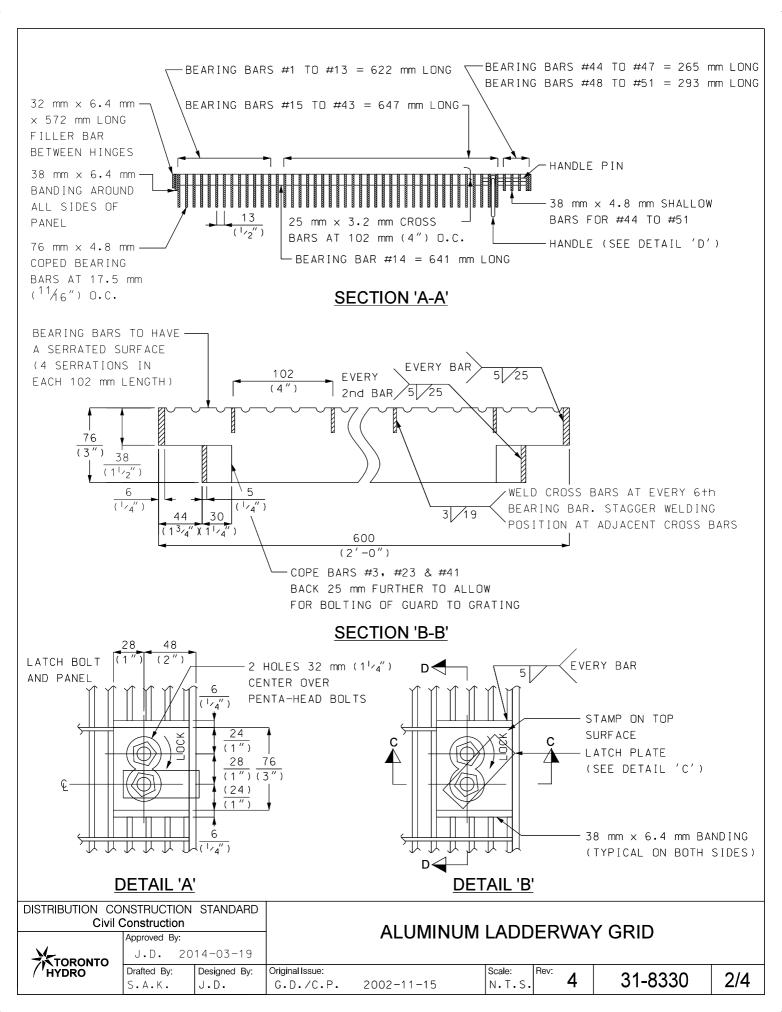


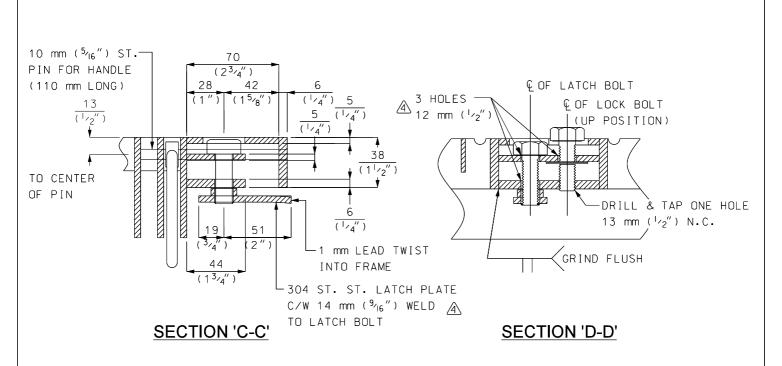
DETAIL 'A'

DETAIL 'B'

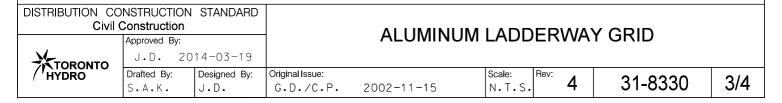
DETAILS OF HOUSING FOR HINGE PIN

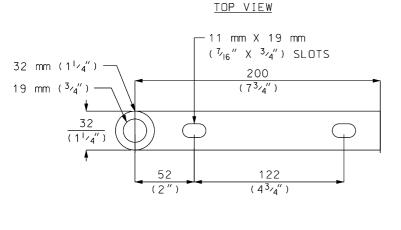


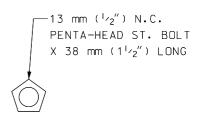


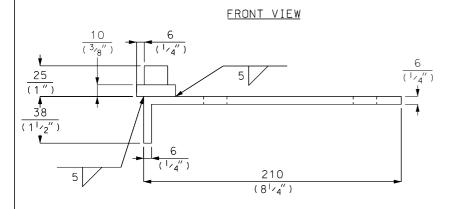

DETAIL 'C' 6 REQUIRED DETAIL 'D'
2 REQUIRED

DETAIL OF ANCHORS

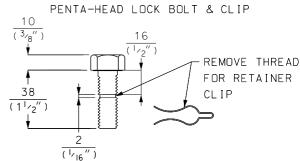

DISTRIBUTION CO Civil (NSTRUCTION Construction	STANDARD		LADDERWAY GRID FRAME					
TORONTO	Approved By: J.D. 20	15-09-21		FOR TRA	NSFORI	MER VA	ULT		
HYDRO	Drafted By: K.K.	Designed By:	Original Issue: G.D./L.G.	2002-11-15	Scale: F	Rev: 3	31-8320	2/2	







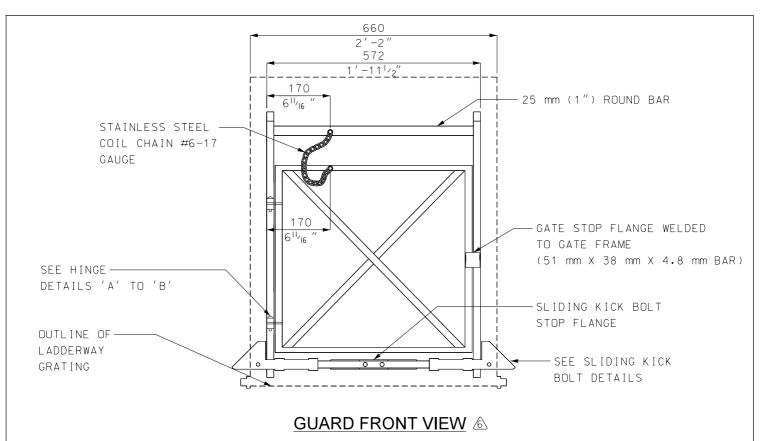
TOP VIEW

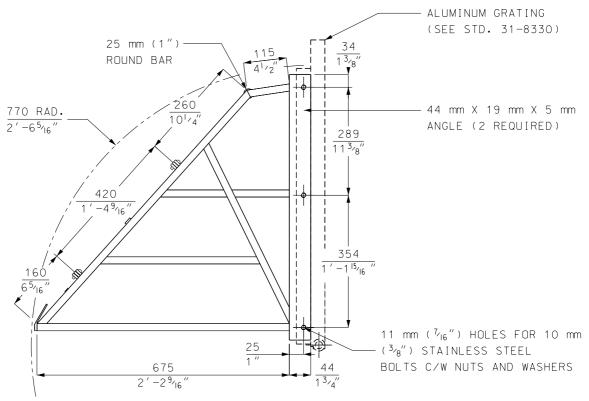


DETAIL 'E'

DETAIL 'F'

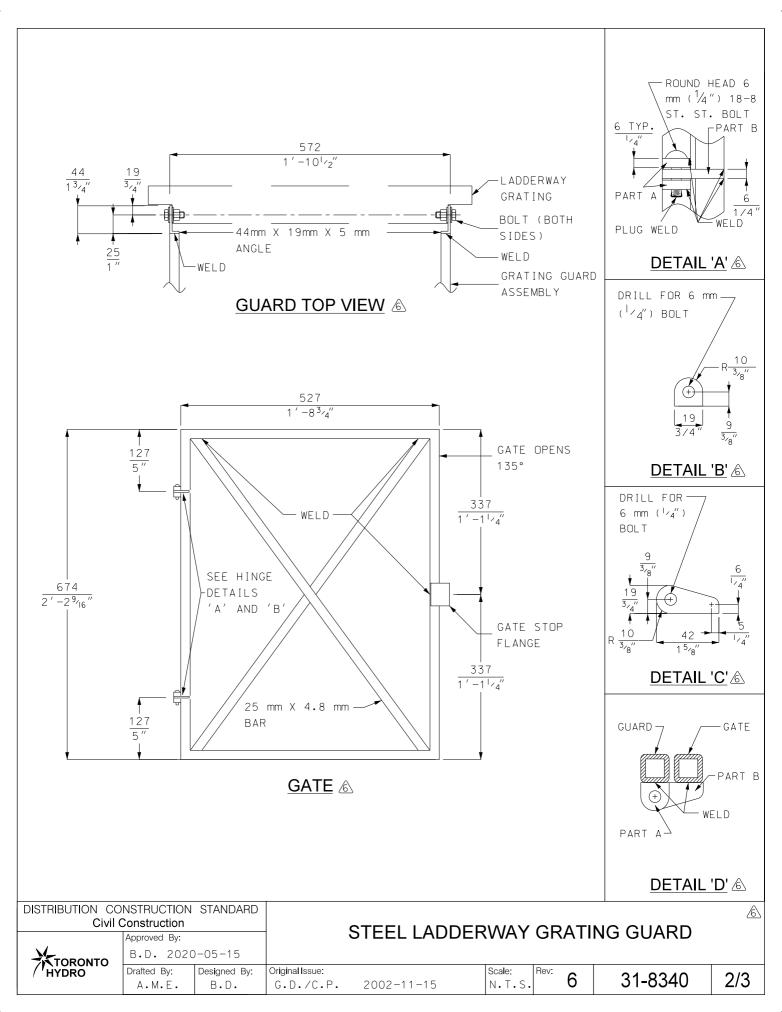
FRONT VIEW

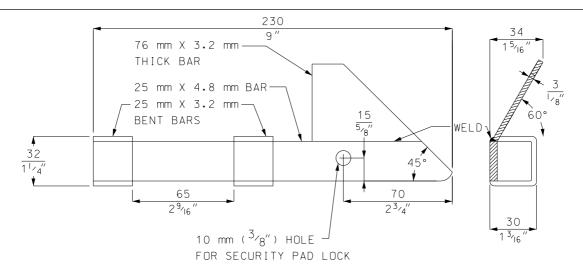


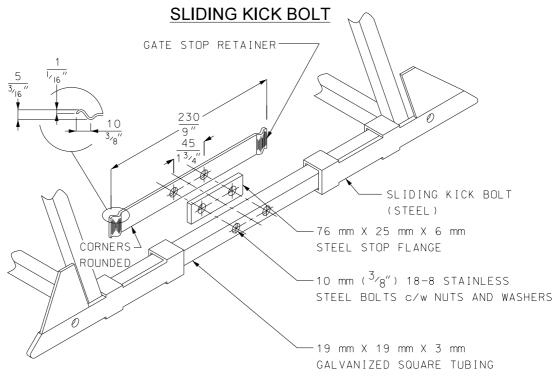

DETAIL 'G'

DETAIL 'H'

- 1) BEARING BAR MATERIAL SHALL BE 6061-T6 ALUMINUM. CROSS BARS SHALL BE NOTCHED AND HYDRAULICALLY PRESSED INTO DOVETAIL SLOTS IN BEARING BARS TO PROVIDE A POSITIVE WEDGED CONNECTION.
- 2) DESIGN SHALL MEET CANADIAN HIGHWAY BRIDGE DESIGN CODE CAN/CSA-S6-06, CL-625-ONT LIVE LOADING.
- 3) HINGE BOLTS, PENTA-HEAD LATCH BOLTS, LATCH PLATE, AND HANDLES SHALL BE 304 MILL FINISH STAINLESS STEEL.
- 4) ALUMINUM GRID FINISH SHALL BE CLEAN ANODIZED TO AA-C22A31 STANDARD.
- 5) ALL STAINLESS STEEL ITEMS SHALL BE INSTALLED AFTER ANODIZING.
- 6) REFER TO STD. 31-8340 FOR ALUMINUM LADDERWAY GRATING GUARD.
- 7) DESIGNED ACCORDING TO STANDARD PRACTICE FOR SAFE WALKING SURFACES, F1637-09 AND CITY OF TORONTO ACCESSIBILITY DESIGN GUIDELINES, LATEST REVISION.

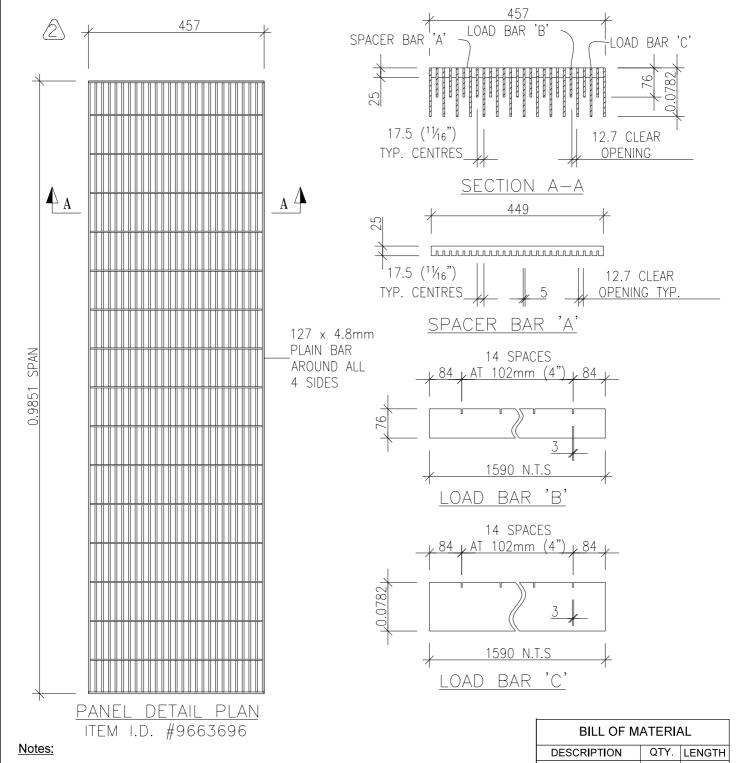

DISTRIBUTION CO	NSTRUCTION Construction	STANDARD		ALUMINUM	1 V D D		V CDID	
V.	Approved By:	014-03-19		ALUMINUM	LADD	EKVVA	i GRID	
TORONTO	Drafted By:	Designed By:	Original Issue:	2002-11-15	Scale:	Rev: 4	31-8330	4/4




GUARD SIDE VIEW (a)

DISTRIBUTION CC		STANDARD						<u>6</u>
Civil	Construction			STEEL LADDERWAY GRATING GUARD				
	Approved By:		,	STEEL LADDEN	V V/~\ I	GNAIII	NG GUAND	
TORONTO	B.D. 2020-05-15							
HYDRO	Drafted By:	Designed By:	Original Issue:		Scale:	Rev:	24 0240	1/2
	A.M.E.	B.D.	G.D./C.P.	2002-11-15	N.T.S.	0	31-8340	1/3

<u>ELEVATION</u> <u>SECTION</u>

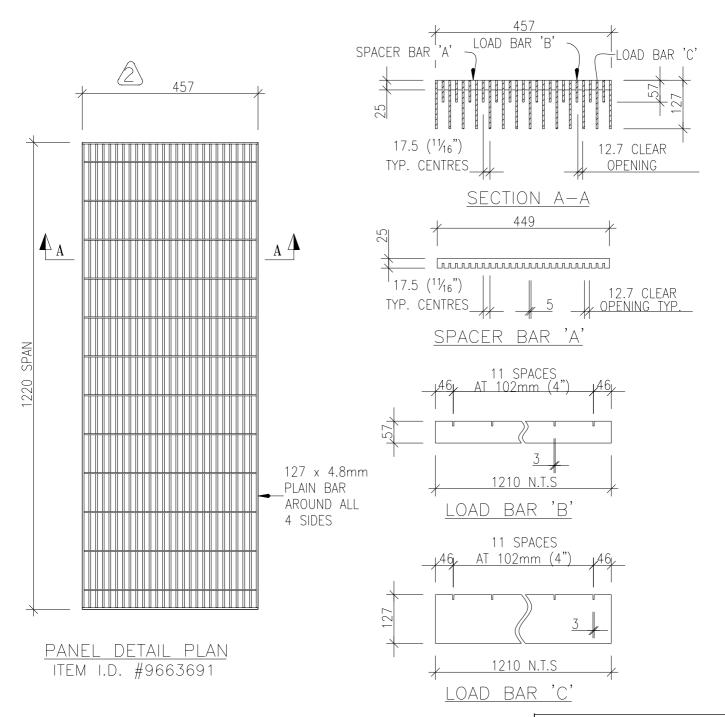


SLIDING KICK BOLT ASSEMBLY &

NOTES:♠

- 1) GUARD AND GATE TO BE FABRICATED OF 19 mm X 19 mm X 3.2 mm GALVANIZED CARBON STEEL SQUARE TUBING.
- 2) WELD ALL JOINTS.
- 3) WHERE POSSIBLE, DRILL/PUNCH ALL HOLES, WELD ALL HINGES AND GATE STOP FLANGE PRIOR TO GALVANIZING.
- 4) ETCH SURFACE AND APPLY "TIGER DRYLAC COATING" IN "SAFETY ORANGE GL/SM" TO GUARD AND GATE.
- 5) LADDERWAY GRATING GUARD TO BE ORDERED IN COMBINATION WITH ALUMINUM GRATING. LADDERWAY GRATING KIT ITEM ID# 9663631.

DISTRIBUTION CO	NSTRUCTION Construction	STANDARD		CTEEL LADDED	ERWAY GRATING GUARD				
TORONTO	Approved By: B.D. 2020-05-15		,	STEEL LADDER	VVAY	GRAIII	NG GUARD		
HYDRO	Drafted By: A.M.E.	Designed By: B.D.	Original Issue:	2002-11-15	Scale: N.T.S.	Rev: 6	31-8340	3/3	

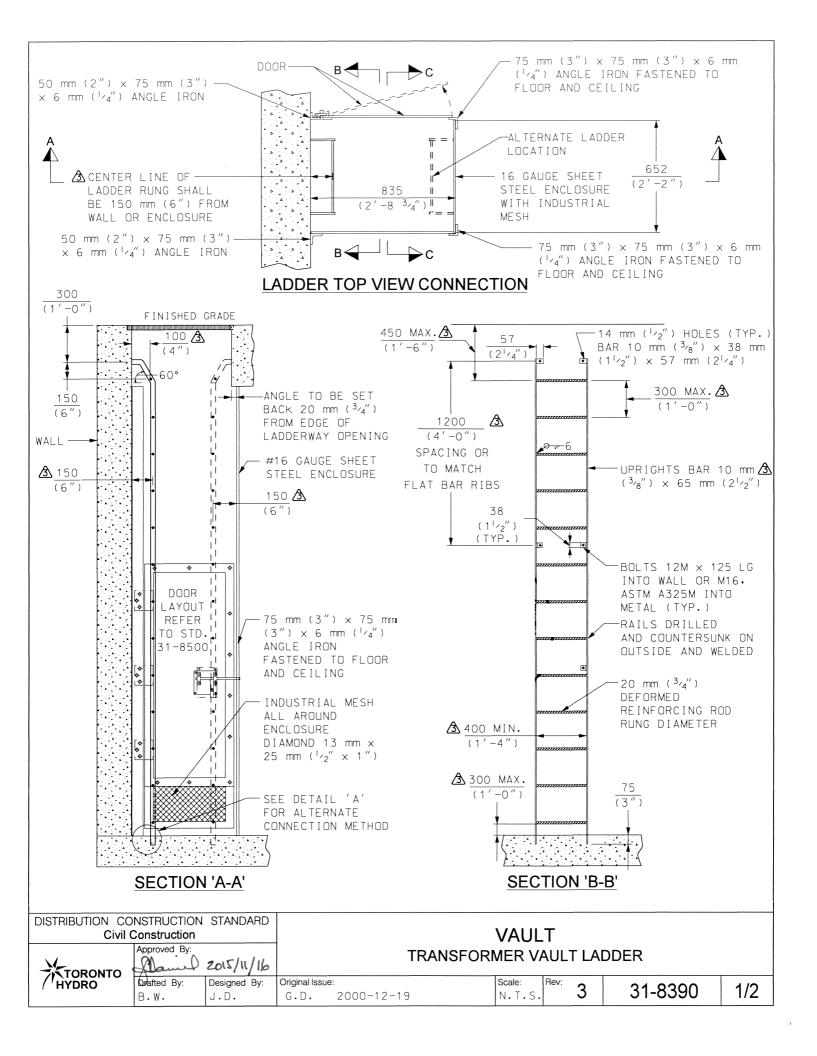

- 1. All dimensions are in millimeters unless noted otherwise.
- 2. Grid to be galvanized in accordance with latest CSA G-164 standard.
- 3. Spacer Bars: To be raised 1mm tack weld joints.
- 4. Load Bars 'B': Weld on one side only at each end.
- 5. Load Bars 'C': Deep weld at each location.

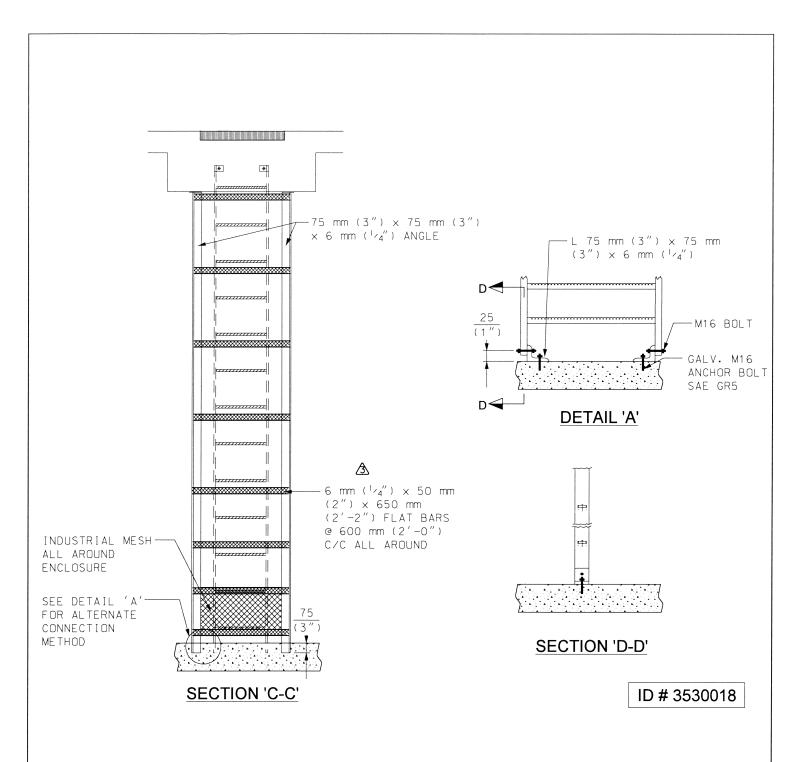
DISTRIBUTION CONSTRUCTION STANDARD

6. Maximum opening of 13mm between load bars.

ļ									
BILL OF MA	ATERI <i>A</i>	۸L							
DESCRIPTION	QTY.	LENGTH							
127 X 4.8mm	2	459							
127 X 4.8mm	2	1590							
S.B. 'A' 25 X 3.2mm	15	449							
L.B. 'B' 76 X 4.8mm	13	1590							
L.B. 'C' 127 X 4.8mm	12	1590							
WEIGHT 172KG (380LBS)									

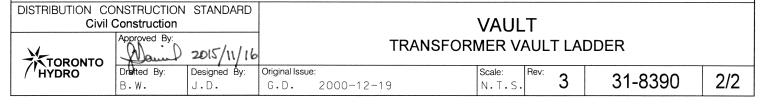
Civil Construction - Material Fabrication			VAULT EX	VAULT EXHAUST VENT GRID:				
TORONTO	Approved By: J.D. 2011-10-11		1600 x 457 x 127mm					
/ HYDRO	Drafted By: S.P.	Designed By:	Original Issue: G.D. C.P. 2002-11-25	Scale: Rev: 2	31- 8350	1/1		

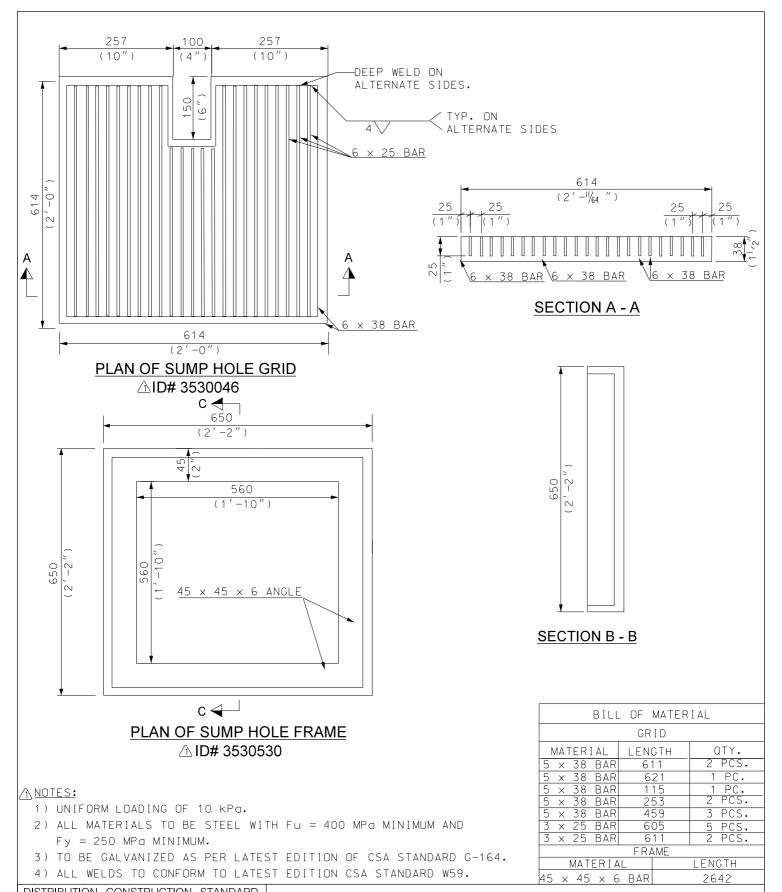


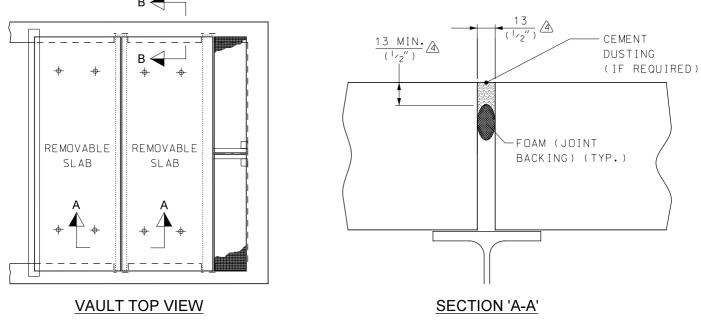

Notes:

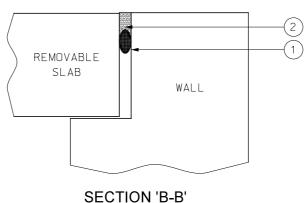
- 1. All dimensions are in millimeters unless noted otherwise.
- 2. Grid to be galvanized in accordance with latest CSA G-164 standard.
- 3. Spacer Bars: To be raised 1mm tack weld joints.
- 4. Load Bars 'B': Weld on one side only at each end.
- 5. Load Bars 'C': Deep weld at each location.
- 6. Maximum opening of 13mm between load bars.

BILL OF MATERIAL									
DESCRIPTION QTY. LENG									
127 X 4.8mm	2	459							
127 X 4.8mm	2	1210							
S.B. 'A' 25 X 3.2mm	15	449							
L.B. 'B' 76 X 4.8mm	13	1210							
L.B. 'C' 127 X 4.8mm	12	1210							
WEIGHT 121KG (267LBS)									

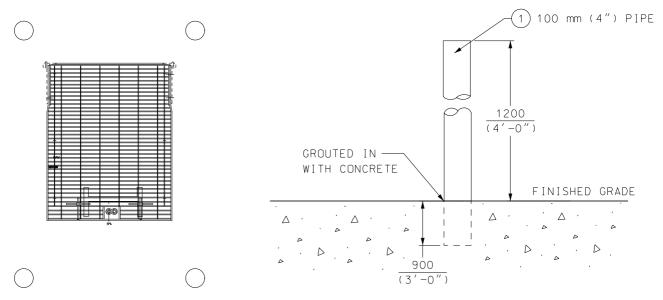

DISTRIBUTION CONSTRUCTION STANDARD Civil Construction - Material Fabrication			VAULT EXHAUST VENT GRID:				
TORONTO	Approved By: J.D. 20	11-10-11	1220) x 457 x 127n	nm		
/ 'HYDRO	Drafted By: A . S .	Designed By:	Original Issue: G.D. C.P. 2002-11-25	Scale: Rev: 2	31- 8360	1/1	




NOTES:

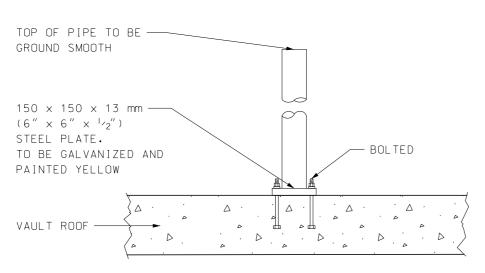

- 1) ALL MATERIAL SHALL BE GALVANIZED IN ACCORDANCE WITH CSA-G-164, EXCEPT HINGES WHICH ARE STAINLESS STEEL.
- 2) STEEL ELEMENTS SHALL BE IN ACCORDANCE WITH CAN3-G312.2-M GRADE 260W.
- 🕭 3) REBARS SHALL BE IN ACCORDANCE WITH CAN/CSA-G30.19 (R2014) GRADE 400W.
 - 4) LOCATION OF LADDER AND DOOR SHALL BE DETERMINED AS PER CONSTRUCTION DRAWING.
 - 5) DOOR AND ENCLOSURE ONLY INSTALLED IN VAULTS WITH HEADROOM GREATER THAN 2200 mm (7 $^{\prime}$ -3 $^{\prime\prime}$).
 - 6) INDUSTRIAL MESH MOUNTED ON ALL OPEN SIDES OF THE ENCLOSURE.

Civil (Construction	STANDARD		VAULT SUMP HOLE GRID & FRAME:					
TORONTO	Approved By: J.D. 20	12-03-24		(650 mm x	c 650 m	nm x 38 n	nm	
HYDRO	Drafted By: H.M.	Designed By:	Original Issue	e: 2002-11-15		Scale: N.T.S.	Rev: 1	31-8400	1/1



	BILL OF MATERIALS FOR 31-8410		
ITEM NO.	DESCRIPTION	ITEM I.D.	QTY A
1	FOAM ⁷ 8" DIA. X 850' GAP FILLER FOR VAULT SLABS	9664496	1
2	COMPOUND JOINT SEALANT 2 PART 5.7 L CONTAINER GREY IN COLOUR	8940080	1

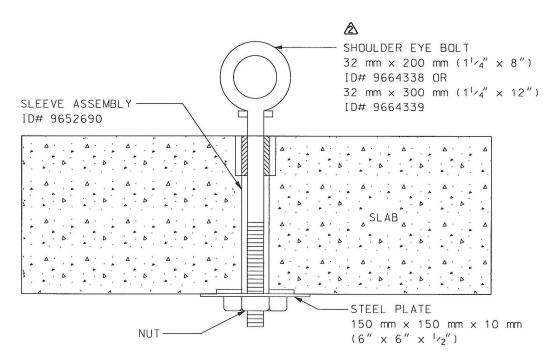
NOTES:


- 1) NEW CONSTRUCTION: CONCRETE JOINT INTERFACES SHALL BE CLEAN, DRY AND FREE OF DUST AND LOOSE MATERIAL. A THOROUGH WIRE BRUSHING OR GRINDING MAY BE REQUIRED. THE PRESENCE OF FORM RELEASE AGENTS, OR OTHER CONTAMINANTS SHALL REQUIRE GRINDING TO EXPOSE SOUND, VIRGIN CONCRETE.
- 2) REMEDIAL APPLICATIONS: ALL PREVIOUS SEALANTS, MASTICS OR JOINT FILLERS SHALL BE REMOVED BY ROUTING OR SAW CUTTING, JOINT INTERFACES SHALL BE GRINDED TO EXPOSE SOUND, VIRGIN CONCRETE.
- 3) SEALANT SUPPORT: FOAM (JOINT BACKING) SHALL BE USED TO CONTROL SEALANT DEPTH. FOAM (JOINT BACKING) SHALL BE ROUND.
- 4) MIXING: IF REQUIRED, THE SEALANT SHALL BE THOROUGHLY MIXED IN ACCORDANCE WITH MANUFACTURER'S DIRECTIONS ON CONTAINER LABEL, BEFORE APPLICATION.
- 5) APPLICATION: THE SEALANT SHALL BE APPLIED DIRECTLY FROM THE CONTAINER INTO JOINTS OR BY STANDARD CAULKING GUN.
- \triangle 6) IF EXISTING JOINT IS LARGER THAN THE SPECIFIED 13 mm ($\frac{1}{2}$), LARGER GAP FILLERS ARE AVAILABLE: FOAM 1" DIA. GAP FILLER (9664495) AND FOAM 1 $\frac{1}{4}$ " DIA. GAP FILLER (9664494)

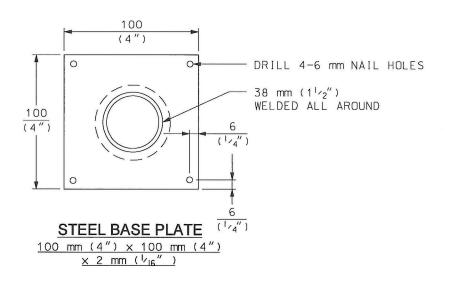
DISTRIBUTION CO	NSTRUCTION Construction	STANDARD		MATERIAL FABRICATION						
TORONTO	Approved By: B.D. 2018-08-31			CAULKING OF REMOVABLE SLABS						
	Drafted By:	Designed By: B.D.	Original Issue: G.D./C.P.	2002-11-15	Scale: N.T.S.	Rev: 4	31-8410	1/1		

LADDERWAY
PLAN VIEW

PIPE BARRIER EMBEDDED IN PAVED AREA

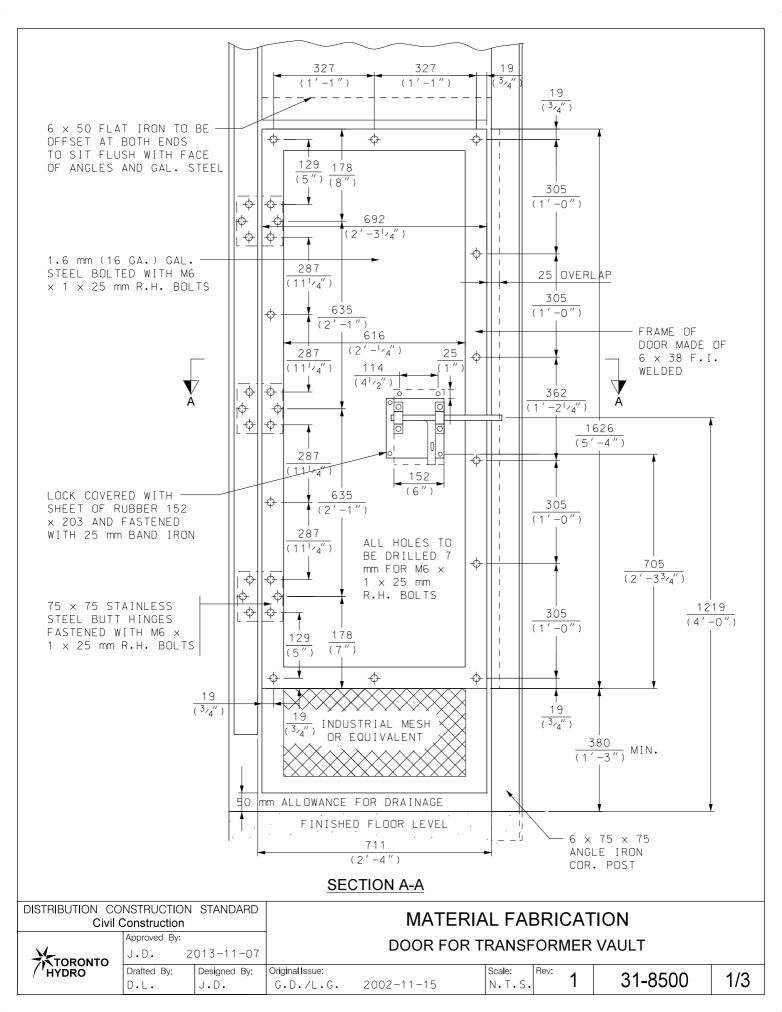

PIPE BARRIER BOLTED TO ROOF

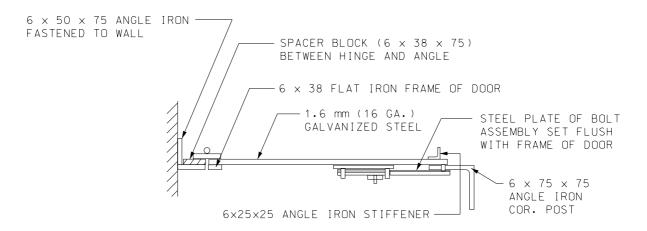
	BILL OF MATERIALS FOR 31-8450		
ITEM NO.	DESCRIPTION	ITEM I.D.	QTY
1	100 mm (4") PIPE	9652745	4


NOTES: 1

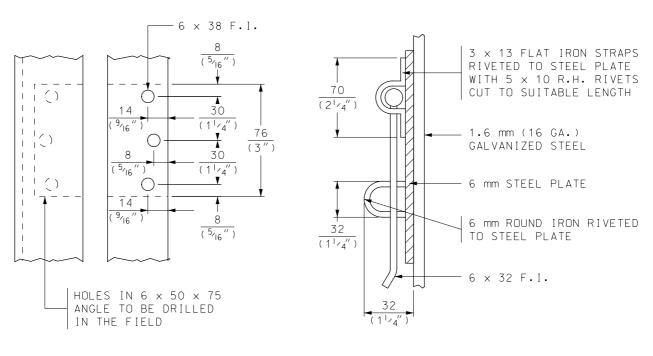
- 1) PIPE SHALL BE FILLED WITH CONCRETE WHEN INSTALLED.
- 2) PIPE SHALL BE GALVANIZED AND PAINTED YELLOW.
- 3) ALL HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH CSA-G-164.

DISTRIBUTION CONSTRUCTION STANDARD Civil Construction			LADDERWAY				
TORONTO	Approved By: J.D. 2	013-11-07			PIPE BARRIER		
HYDRO	Drafted By: K.H.	Designed By:	Original Issue: G.D./C.P.	2002-11-15	Scale: Rev: 1	31-8450	1/1

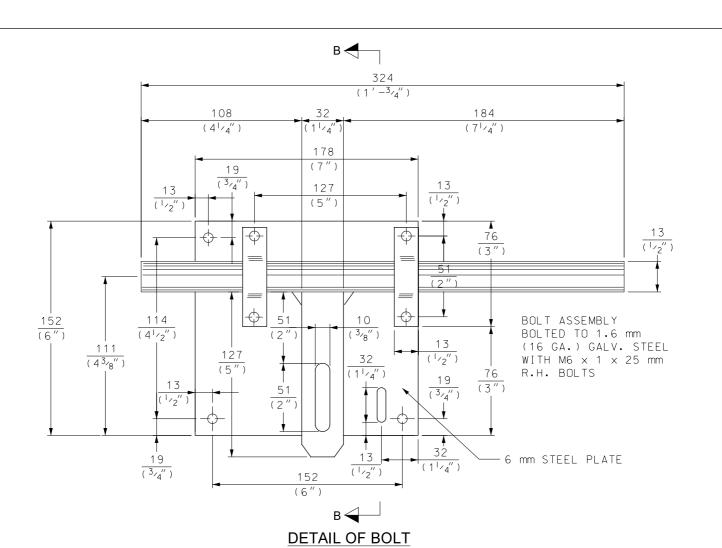

SECTION SHOWING METHOD OF LIFTING



NOTES:


1) ASSEMBLY SHALL BE GALVANIZED IN ACCORDANCE WITH CSA-G-164.

DISTRIBUTION CONSTRUCTION STANDARD MATERIAL FABRICATION Civil Construction Approved By: SLEEVE - LIFTING FOR REMOVABLE CONCRETE SLAB Daniel 2016/05/25 TORONTO HYDRO Drafted By: Designed By: Original Issue: Scale: Rev: 31-8470 1/1 D.C. J.D. G.D. 2002-11-15 N.T.S


SECTION A-A

DETAIL OF HINGE

SECTION B-B

	NSTRUCTION Construction	STANDARD	MATERIAL FABRICATION						
TORONTO	Approved By: J.D. 2013-11-07			DOOR FOR TRANSFORMER VAULT					
	Drafted By:	Designed By:	Original Issue: G.D./L.G.	2002-11-15	Scale: Rev: 1		31-8500	2/3	

	1						
BILL OF MATERIALS							
DESCRIPTION	QTY.						
6 mm × 38 mm FLAT IRON	5944 mm						
6 mm x 32 mm FLAT IRON	127 mm						
6 mm × 50 mm FLAT IRON	705 mm						
13 mm ROUND IRON	229 mm						
6 mm ROUND IRON	89 mm						
6 mm × 25 mm × 25 mm ANGLE IRON	1626 mm						
6 mm STEEL PLATE 152 mm x 178 mm	1 PC						
3 mm x 13 mm F.I. STRAPS, 95 mm LONG	2 PCS						
75 mm x 75 mm HEAVY BUTT HINGES	1 1/2 PR						
5 mm x 16 mm R.H. RIVETS	4						
1.6 mm GALV. STEEL, 1626 mm x 717 mm	1 PC						
M6 x 1 x 25 mm R.H. BOLTS	52						
RUBBER SHEET, 152 mm X 203 mm	1 PC						
25 mm BAND IRON	152 mm						
6 mm F.I. SPACER BLOCKS 38 mm x 75 mm	3 PCS						

DISTRIBUTION CONSTRUCTION STANDARD Civil Construction			MATERIAL FABRICATION					
TORONTO HYDRO	Approved By: J.D. 2	013-11-07	DOOR FOR TRANSFORMER VAULT					
	Drafted By:	Designed By:	Original Issue: G.D./L.G.	2002-11-15	Scale: N.T.S.	Rev: 1	31-8500	3/3